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ABSTRACT 

In this thesis, we develop a temperature-dependent homogenization technique and 

implement it into the meshfree particle method for nanoscale continuum simulations. As 

a hierarchical multiscale method, the nanoscale meshfree particle method is employed to 

model and simulate nanostructured materials and devices. 

Recently developed multiscale methods can overcome the limitations of both 

length and time scales that molecular dynamics has. However, multiscale methods have 

difficulties in investigating temperature-dependent physical phenomena since most 

homogenization techniques employed in continuum models have an assumption of zero 

temperature. A new homogenization technique, the temperature-related Cauchy-Born 

(TCB) rule, is proposed with the consideration of the free energy instead of the potential 

energy in this thesis. This technique is verified via stress analyses of several crystalline 

solids. The studies of material stability demonstrate the significance of temperature 

effects on nanostructured material stability. 

Since meshfree particle methods have advantages on simulating the problems 

involving extremely large deformations and moving boundaries, they become attractive 

options to be used in the hierarchical multiscale modeling to approximate a large number 

of atoms. In this thesis, a nanoscale meshfree particle method with the implementation of 

the developed homogenization technique, i.e. the TCB rule, is proposed. It is shown that 

numerical simulations in nanotechnology can be beneficial from this technique by saving 

a great amount of computer time. The nanoscale meshfree particle method is employed to 

investigate the crack propagation in a nanoplate with the development of cohesive zone 

model and a thermal-mechanical coupling model. In addition, the nanoscale meshfree 
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particle method is simplified to successfully study mechanisms of nanotube-based 

memory cells. 
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ABSTRACT 

In this thesis, we develop a temperature-dependent homogenization technique and 

implement it into the meshfree particle method for nanoscale continuum simulations. As 

a hierarchical multiscale method, the nanoscale meshfree particle method is employed to 

model and simulate nanostructured materials and devices. 

Recently developed multiscale methods can overcome the limitations of both 

length and time scales that molecular dynamics has. However, multiscale methods have 

difficulties in investigating temperature-dependent physical phenomena since most 

homogenization techniques employed in continuum models have an assumption of zero 

temperature. A new homogenization technique, the temperature-related Cauchy-Born 

(TCB) rule, is proposed with the consideration of the free energy instead of the potential 

energy in this thesis. This technique is verified via stress analyses of several crystalline 

solids. The studies of material stability demonstrate the significance of temperature 

effects on nanostructured material stability. 

Since meshfree particle methods have advantages on simulating the problems 

involving extremely large deformations and moving boundaries, they become attractive 

options to be used in the hierarchical multiscale modeling to approximate a large number 

of atoms. In this thesis, a nanoscale meshfree particle method with the implementation of 

the developed homogenization technique, i.e. the TCB rule, is proposed. It is shown that 

numerical simulations in nanotechnology can be beneficial from this technique by saving 

a great amount of computer time. The nanoscale meshfree particle method is employed to 

investigate the crack propagation in a nanoplate with the development of cohesive zone 

model and a thermal-mechanical coupling model. In addition, the nanoscale meshfree 
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particle method is simplified to successfully study mechanisms of nanotube-based 

memory cells.   
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation  

Significant interest has been generated recently in the field of nanoscale materials 

and devices, in which the grain size is usually in the range of 1-100nm. Within this length 

scale, the properties of matter are sufficiently different from both individual 

atoms/molecules and bulk materials. Such studies have been recently recognized as a new 

area of science, which is generally termed Nanoscience. Even more popular than 

Nanoscience has become the term Nanotechnology, which relates to the ability to build 

functional devices based in the controlled assembly of nanoscale objects, for specific 

technological applications [1-3]. Nanotechnology has been playing an important role in 

materials science, space exploration and information technology. It can also offer new 

techniques for biotechnology and agriculture. Nanotechnology covers a wide range of 

industries, and therefore the potential benefits are also widespread. 

Numerical simulation has become a powerful tool and has made a significant 

contribution to the fields of nanoscience and nanotechnology. The efficient numerical 

methods will stimulate the nanotechnology development, such as the nanoscale material 

and device design. The popularly-used molecular dynamics is expected to be one of the 

candidates. Although molecular systems with billions of atoms [4, 5] can be modeled 

using molecular dynamics (MD) with current high-performance computing techniques, 

limitations of MD are always found on both length and time scales.  These limitations 

prevent us from studying certain phenomena such as material failure. With the 
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development of nanotechnology, multiscale methods have been of interest as a potential 

alternative for MD since they are feasible for simulating large nanoscale systems. 

Recently developed multiscale methods still have some limitations. One issue is 

that most multiscale methods conduct continuum approximation in large scales through a 

homogenization technique such as the Cauchy-Born (CB) rule [6, 7]. It provides the 

constitutive relation as a link between molecular and continuum models. However, the 

conventional CB rule assumes that the simulated systems are at zero temperature. 

Consequently, temperature effects at the nanoscale cannot be investigated via the 

continuum approximation. On the other hand, it has been shown that most physical 

phenomena of nanoscale materials and devices [8], particularly material failure and 

damping in devices, are temperature-dependent. Therefore, a temperature-dependent 

homogenization technique is needed to enhance multiscale models. 

Most multiscale methods employ finite element methods in continuum models. 

Since meshfree particle methods are more attractive for usage in a variety of situations 

[9-12], including problems with moving boundaries, discontinuities, and extremely large 

deformations, the incorporation of them with a homogenization technique will benefit the 

simulation through multiscale methods. 

1.2 Literature Review of Multiscale Modeling  

There are two types of multiscale methods: concurrent multiscale methods and 

hierarchical multiscale methods.  
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1.2.1 Concurrent Multiscale Modeling 

Concurrent multiscale methods treat different length scales simultaneously by 

using different numerical methods. The recently developed concurrent multiscale 

techniques mainly focus on the coupling methods between the continuum and molecular 

models. Abraham and his coworkers [13, 14] developed a methodology called MAAD 

(Macro-Atomistic-Ab initio-Dynamics), which coupled a tight-binding quantum 

mechanical calculation, molecular dynamics, and a finite element method. Rudd and 

Broughton [15, 16] proposed a coarse-grained method. They superimposed the atomistic 

Hamiltonian on a continuum Hamiltonian so a coarse scale domain was used to represent 

the fine scale domain. Wagner and Liu [17] have proposed a bridging scale method in 

which the molecular displacements were decomposed into a molecular scale and a 

continuum scale. Park and his co-workers [18] developed a multiscale method in which 

the molecular displacements are decomposed into fine scale (molecular) and coarse scale 

(continuum). Belytschko and Xiao [19, 20] developed a bridging domain coupling 

method by overlapping the continuum model and the molecular model via the bridging 

domain. Their method can efficiently eliminate the nonphysical wave reflection that 

usually occurs at the interface of different length scales.  

1.2.2 Hierarchical Multiscale Modeling 

Hierarchical multiscale methods use the continuum approximation to model a 

large group of molecules. The continuum approximation is based on the properties of the 

atomic model, such as an MD model. One can use a homogenization procedure, like the 

Cauchy-Born rule, in the continuum model. Consequently, the intrinsic properties of the 

material at the atomic level can be obtained and embedded in the continuum model. The 



www.manaraa.com

 

 

4

classical Cauchy-Born rule states that the deformation is locally homogeneous, and this 

model is also called the quasicontinuum model. Based on an extended version of the local 

quasicontinuum model [21], Smith and his coworkers reported that the simulations of 

silicon nanoindentation were capable of handling complex crystal structures. Diestler et 

al. [22, 23] developed an alternative “static” finite-element coarse-graining description 

which is an extension to nonzero temperatures of the quasicontinuum procedure. The 

major drawbacks of hierarchical multiscale methods relate to the difficulties in modeling 

defects in molecular lattices, dislocations, crack initiation and growth, as well as 

limitations arising from the homogeneous deformation model used. There are several 

algorithms to solve these issues. Rodney and Phillips [24] built quasicontinuum 

simulations of dislocations lying in intersecting slip planes, and calculated the threshold 

stress required to break the dislocation junction. Mortensen and his coworkers [25] used a 

mixed local/nonlocal quasicontinuum with some modifications to study a cross-slip of 

screw dislocations and job mobility in copper. With the wide usage of the Cauchy-Born 

rule, Arroyo and Belytschko [26, 27] found that the classical Cauchy-Born rule has some 

difficulties for many important situations, such as in single-layer curved crystalline sheets. 

They developed a methodology called the exponential Cauchy-Born rule to solve this 

issue. Shenoy et al. [28] developed a finite-temperature quasicontinuum method. Chen et 

al. [29] developed a discontinuous Galerkin (DG) method, within the framework of the 

heterogeneous multiscale method (HMM), to solve hyperbolic and parabolic multiscale 

problems. 
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1.3 Objectives 

The ultimate objective of this thesis is to develop an efficient hierarchical 

multiscale method for modeling nanostructured materials and simulating temperature-

dependent physical phenomena at the nanoscale. 

The purposes of the present work are the following: (1) to develop a new 

homogenization technique, the temperature-related Cauchy-Born (TCB) rule, for 

multiscale methods; (2) to implement the TCB rule into meshfree particle method to 

investigate the temperature effects on nanostructured materials; (3) to analyze 

temperature-dependent material stability of nanostructured materials; (4) to develop a 

thermal-mechanical coupling model for nanoscale continuum simulations; (5) to study 

electromechanical behavior of nanotube-based devices. 

1.4 Outline of the Thesis 

The thesis is organized as follows. 

♦ Chapter 2: Meshfree Particle Methods 

Meshfree particle methods are briefly introduced in this chapter. The weak forms 

for particle methods are derived from the governing equations. Based on the kernel 

approximation, the discrete equations are then given. Two different domain integration 

schemes and explicit time integration scheme are introduced here. In addition, the 

stability of meshfree particle methods using different kernel functions and integration 

schemes are briefly discussed. 

♦ Chapter 3: Temperature-dependent Homogenization Technique 

In this chapter, a new temperature-dependent homogenization technique for 

multiscale modeling, the temperature-related Cauchy-Born (TCB) rule, is developed. 
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Stress analyses of several crystalline solids verify the continuum approximation with the 

TCB rule by comparing the calculated Cauchy stresses with the outcomes of molecular 

dynamics simulations.  

♦ Chapter 4: Nanoscale Meshfree Particle Methods 

A nanoscale meshfree particle method with the implementation of the 

temperature-related Cauchy-Born rule is proposed in this chapter. Several numerical 

examples show that numerical simulations in nanotechnology can be beneficial from the 

advantages of the meshfree particle methods. This progress could not only save a great 

amount of computer time but also make it possible to treat extremely large deformation 

problems and the problems involving discontinuities, such as fractures, at nanoscale. 

Through this hierarchical multiscale method, the nanoscale crack propagation problem is 

investigated using visibility criterion and cohesive model.  The observed crack 

propagation phenomena at finite temperatures match the ones in molecular dynamics 

simulations.  It is shown that the temperature effects are significant on the crack 

propagation speed when the temperature is in a particular range. 

♦ Chapter 5: Temperature-dependent Material Stability 

The general concept of material stability and several different stability criteria of 

crystalline solids are introduced and compared in this chapter. A standard linearized 

stability analysis process is conducted for nanostructured materials using temperature-

dependent homogenization technique. It can be seen that temperature effects on material 

stability of nanostructured materials are significant.   

♦ Chapter 6: Thermal-mechanical Coupling 
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In this chapter, a thermo-mechanical model is developed via coupling the energy 

equation with the momentum equations in nanoscale continuum approximations. The 

temperature-related constitutive relation is represented by TCB rule and the system 

temperature profile is updated via solving discrete equations of thermal flow. The 

nanoscale crack propagation is reanalyzed using the thermal-mechanical coupling method. 

♦ Chapter 7: Nanotube-based Oscillator 

The mechanism of the nanotube-based oscillator is studied by the nanoscale 

meshfree particle method in this chapter. Since the rigid body motion dominates the 

oscillation of oscillators, the nanoscale meshfree particle model is simplified to calculate 

interlayer interaction between the outer tube and inner tube. A nanoelectromechanical 

systems (NEMS) design, containing nanotube-based oscillators is proposed as a memory 

cell. Numerical analyses demonstrate that the representation of the Boolean logic states is 

possible. 

♦ Chapter 8: Summary and Future Work 

The present research work is summarized. The future tasks are outlined.  

1.5 Contributions 

The contributions of the present work include: 

1. Developing a new temperature-dependent homogenization technique for 

hierarchical multiscale modeling. 

2. Developing a new hierarchical multiscale method in which the TCB rule was 

implemented into meshfree particle methods so that temperature effects on 

mechanics of nanostructured materials could be investigated via continuum 

approximations. 
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3. Investigating nanoscale crack propagation problems at various temperatures 

using the developed hierarchical multiscale method and a cohesive zone 

model. 

4. Analyzing the material stability of nanostructured materials with the 

consideration of temperature effects.  

5. Coupling the energy equation with the momentum equations in the nanoscale 

continuum approximation to analyze the thermo-mechanical behavior of the 

nanoscale crack propagation. 

6. Studying the electromechanical properties of the nanotube-based memory cell 

to obtain the steady oscillatory mechanism and Boolean logic states. 
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CHAPTER 2  

MESHFREE PARTICLE METHODS 

2.1 Introduction 

Finite element methods are often used for modeling continua in multiscale 

methods based on the quasicontinuum approach. However, meshfree particle methods are 

more attractive for usage in a variety of situations, including problems with moving 

boundaries, discontinuities, and extremely large deformations. In general, there are two 

types of meshfree particle methods: field approximation based methods, such as Element-

Free Galerkin (EFG) methods [30], and kernel approximation based methods, such as 

Reproduced Kernel Particle Methods (RKPM) [31] and Smoothed Particle 

Hydrodynamics (SPH) [32]. There are two kernel functions used in the kernel based 

meshfree particle methods: the Lagrangian kernel, which is a function of the material 

coordinates, and the Eulerian kernel, which is a function of the spatial coordinates. In this 

thesis, we will employ the meshfree particle methods with a Lagrangian kernel.  

2.2 Governing Equations 

One of the physical principles governing the continuum is the conservation of 

momentum, and it can be written as the follows under a so-called total Lagrangian 

description in a reference configuration 0Ω : 

 0 0
ji

i i
j

P
b u

X
ρ ρ

∂
+ =

∂
&&  (2.1) 

where 0ρ  is the initial density, P  is the nominal stress (the transpose of the first Piola-

Kirchhoff stress) [33], X  are the  material (Lagrangian) coordinates, b  is the body force 
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per unit mass and u  is the displacement and the superposed dots denote material time 

derivatives. Eq. (2.1) can be written as the spatial form of the momentum equations under 

the Eulerian description in the current configuration Ω : 

 ji
i i

j

b u
x
σ

ρ ρ
∂

+ =
∂

&&  (2.2) 

where ρ  is the current density, σ  is the Cauchy stress tensor, and x  are the spatial 

(Eulerian) coordinates. By conservation of mass, 

 0Jρ ρ=  (2.3) 

where J  is the Jacobian determinant of deformation gradient F , which are defined by 

 ( )detJ = F ,    i
ij

j

xF
X
∂

=
∂

 (2.4) 

It can be seen that the two above forms of momentum equations in Eq. (2.1) and 

Eq. (2.2) are identical and differ in form only because they are expressed in different 

descriptions [33, 34]. Since we use the Lagrangian description in this thesis, the Galerkin 

weak form of the momentum conservation equation is 

 
0 0 0 0

0 0 0 0 0 0i i i i ij ji i iu u d u b d F P d u t dδ ρ δ ρ δ δ
Ω Ω Ω Γ

Ω = Ω − Ω + Γ∫ ∫ ∫ ∫&&  (2.5) 

where iuδ  is the test function, and it  is the prescribed boundary traction. The discrete 

equations of motion can be derived from weak form, Eq. (2.5), for dynamic problems. 

2.3 Particle Method Approximations and Kernel Functions 

In particle methods, displacements can be approximated by 

 ( ) ( ) ( ),h
I I

I
t tω=∑u X X u  (2.6) 
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where ( )Iω X  are called Lagrangian kernel functions [35] because they are functions of 

material (Lagrangian) coordinates. If spatial (Eulerian) coordinates are used, the 

approximation of displacements can be written in terms of Eulerian kernel functions as 

the follows: 

 ( )( ) ( )( ) ( ),h
I I

I
t t t tω=∑u x x u  (2.7) 

 

  

 Figure 2.1: The domain of influence of particle IX  

 

In this thesis, we use Lagrangian kernel functions because particle methods with 

Lagrangian kernel functions are more stable than the ones with Eulerian kernel functions 

[35]. The Lagrangian kernel functions can be obtained from the weight function,  

 ( ) ( ) ( )
( )

I
I I

K
K

W
W

ω ω
−

= − =
−∑

X X
X X X

X X
 (2.8) 

which is the kernel approximation that reproduces constant functions. Here, we use a 

quartic spline weight function 

 ( )
2 3 4 for 11 6 8 3

for 10
ss s s

W s
s
≤⎧ − + −

= ⎨ >⎩
 (2.9) 
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where s r h= , Ir = −X X , and h  is the support radius of the influence domain as 

shown in Fig. 2.1. It is determined by a dilation parameter mxD . We define mxh D X= Δ  

for uniformly spaced particles in one dimension. The kernel function is of compact 

support, i.e., ( ) 0Iω >X  only in the neighborhood of X .  

We can see that, from Eq. (2.8), the kernel functions, ( )Iω X , obviously 

reproduce the constant functions, i.e. ( ) 1I
I

ω =∑ X , but not the linear functions. In other 

words, one can find that ( )I
jI ij

I i

X
X

ω
δ

∂
≠

∂∑
X

. Krongauz and Belytschko [36] developed 

a correction that enables the derivatives of constant or linear functions to be reproduced 

exactly. The corrected derivatives of displacements are denoted by ( ),jiL tX  and are 

approximated by: 

 ( ) ( ) ( ),ji iI jI
I

L t G u t=∑X X  (2.10) 

where ( )iIG X  are the corrected derivatives of Lagrangian kernel functions. Note here 

that ( ),jiL tX  is different from 
( ),h

j

i

u t
X

∂

∂

X
 with h

ju  defined by Eq. (2.6). The corrected 

derivatives are defined as linear combinations of the exact derivatives of kernel functions, 

so linear functions (coordinates for instance) can be reproduced by the particle method 

approximation: 

 ( ) ( )I
iI jI ik jI ij

I I k

G X a X
X

ω
δ

∂
= =

∂∑ ∑
X

X  (2.11) 

The above can be written in a matrix form: 

 T =Aa I  (2.12) 
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where I  is the identity matrix and for a three-dimensional approximation, 

 
, , ,

, , ,

, , ,

I X I I Y I I Z I

I X I I Y I I Z I

I X I I Y I I Z I

X X X
Y Y Y
Z Z Z

ω ω ω
ω ω ω
ω ω ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  (2.13) 

 
XX XY XZ

YX YY YZ

ZX ZY ZZ

a a a
a a a
a a a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

a  (2.14) 

By solving Eq. (2.12) for the coefficient matrix a , one can obtain the corrected 

derivatives of kernel functions, ( )iIG X . Therefore, the approximation for the derivatives 

of the displacement in Eq. (2.10) can be written as follows: 

 ( ) ( ) ( ) ( ),,ji ik I k jI
I k

L t a u tω⎡ ⎤= ⎢ ⎥⎣ ⎦
∑ ∑X X X  (2.15) 

Therefore, the gradient of deformation is expressed as: 

 1 1i
ij ij

j

uF L
X
∂

= + = +
∂

 (2.16) 

2.4 Discrete Equations 

Substituting the approximation of displacements of Eq. (2.6) and a similar 

expansion for ( )δu X  into the weak form of Eq. (2.5), the following discrete equations of 

motion are obtained: 

 ext int
I iI iI iIm u f f= −&& , 0

0I Im Vρ=  (2.17) 

where 0
IV  is the volume associated with the particle I , ext

iIf  and int
iIf  are the external and 

internal nodal forces respectively, given by 

 
0 0

0 0
0

t

ext
iI I i I if b d N t dρ ω

Ω Γ
= Ω + Γ∫ ∫  (2.18) 
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0

0
( )int I

iI ji
j

f P d
X

ω
Ω

∂
= Ω

∂∫
X  (2.19) 

Stationary principles can be applied for conservative, static problems. The 

equilibrium solutions can be found by searching a set of displacements from which the 

minimum potential can be obtained, i.e. 

 
( ) ( ) ( )

0 0 0
0 0 0 0

0 int ext

ij ji i i i i

W W W

F P d u b d u t d

δ δ δ

δ δ ρ δ
Ω Ω Γ

= = −

= Ω − Ω − Γ∫ ∫ ∫
u u u

 (2.20) 

Note here that Eq. (2.20) is identical to Eq. (2.5) if the accelerations are set zero in Eq. 

(2.5) for static problems. We can obtain the residual as: 

 0
int ext

int ext
iI iI iI

iI iI iI

W W Wr f f
u u u
∂ ∂ ∂

= = = − = −
∂ ∂ ∂

 (2.21) 

where internal and external nodal forces are defined as Eq. (2.18) and Eq. (2.19). 

The increments of the internal and external forces can be related to the increments 

of nodal displacements by stiffness matrices via the Newton method: 

 int intΔ = Δf K u    or    int int
I IJ J

J
Δ = Δ∑f K u  (2.22) 

 ext extΔ = Δf K u     or    ext ext
I IJ J

J
Δ = Δ∑f K u  (2.23) 

where intK  and extK  are tangent stiffness matrices given by 

 
2int int

int I
IJ

J I J

W∂ ∂
= =
∂ ∂ ∂
fK
u u u

, 
2ext ext

ext I
IJ

J I J

W∂ ∂
= =
∂ ∂ ∂
fK
u u u

 (2.24) 

Therefore, Newton equations can be obtained by linearization of Eq. (2.21) as: 

 ( )int ext− Δ = −K K u r  (2.25) 
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2.5 Numerical Domain Integration Schemes 

2.5.1 Nodal Integration 

 

  

 Figure 2.2: Volume associated with particle I  for nodal integration scheme 

  

To obtain the discrete momentum equations from the weak form, the integrals of 

the right hand sides of Eq. (2.18) and Eq. (2.19) need to be evaluated by numerical 

quadrature. In EFG method, background elements or voxels are used [30]. However, the 

integration by using full quadrature points is computationally intensive. Beissel and 

Belytscho [37] have proposed the nodal integration scheme for the EFG method, where 

any integral is evaluated by summing the function at the nodes, i.e. 

 ( ) ( )
0

0
0 I I

I
G d G V

Ω
Ω =∑∫ X X  (2.26) 

where 0
0 0IV m ρ=  is the volume associated with node I . Fig. 2.2 shows that the volume 

can be calculated through the triangulation and Voronoi diagram. The internal nodal 

force, Eq. (2.19), are then computed by 
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 0 ( ) ( )int I J
iI J ji J

J N j

f V P
X

ω
∈

∂
=

∂∑ X X  (2.27) 

This approach was found to be unstable by Beissel and Belytscho [37]. It will 

result in one of the instabilities due to rank deficiency for some problems [20, 35]. 

2.5.2 Stress Point Integration 

One approach to stabilizing nodal integration is to use additional quadrature 

points called stress points or slave points/particles [38]. In this approach, slave particles 

are added to the original set of particles (master particles). The nomenclature “slave” 

nodes originates in finite element methods, where slave nodes are nodes whose motion is 

completely determined by the motion of master nodes through kinematics relations. In 

other words, the kinematic variables of slave particles, such as displacements and 

velocities, are evaluated from the neighboring master particles by the approximation, Eq. 

(2.6). 

The most stable situation is the hexagonal arrangement of master particles in 

which the stress points are placed in the center of “virtual” triangles.  If master particles 

are arranged irregularly for an object with arbitrary geometry, triangulation is usually 

used to construct a triangular (or tetrahedral in 3D) mesh as shown in Fig. 2.3(a).  The 

stress points are then placed at the center of triangles (or tetrahedrons in 3D).  Next, the 

Voronoi cells are constructed for both master particles and stress points, as shown in Fig. 

2.3(b).  The volumes of these cells are used as 0M
JV  and 0S

JV  for the stress point 

integration. However, the algorithms for triangulation and Voronoi diagram are 

complicated, especially for three-dimensional problems, and are not applicable, 

consequently, for multiple dimensional problems with an arbitrary geometry.   
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(a) Triangulation                           (b) Voronoi diagram 

 Figure 2.3: Stress point placement and volume calculation 

 

The slave particles are used only for the integration of the Galerkin weak form; 

the discrete momentum equations are not enforced at the slave particles, since the 

displacements of the slave particles are not arbitrary. The displacements and velocities at 

the slave particles (stress points), according to Eq. (2.6), are 

 ( )S S M
I J I J

J
u uω=∑ X         ( )S S M

I J I J
J

v vω=∑ X  (2.28) 

where S
IX  is the material coordinate of a slave particle. The internal nodal forces are 

given by 

 0 0( ) ( )( ) ( )
M S

M S
int M M S SI J I J

iI J ji J J ji J
J N J Nj j

f V P V P
X X

ω ω
∈ ∈

∂ ∂
= +

∂ ∂∑ ∑X XX X  (2.29) 

where MN , SN  are the sets of master and slave particles, respectively, which contribute 

to the master particle at M
IX . The volumes 0M

JV  and 0S
JV  are the volumes of the Voronoi 

cells associated with the master and slave particle, respectively. It follows that 



www.manaraa.com

 

 

18

 0 0 0
SM NN

M S
J J J

J J
V V V+ =∑ ∑  (2.30) 

In the above, 0V  is the initial total volume and MN , SN  are the number of master 

particles and stress points in the model, respectively. Note that the volume for the master 

particle I , 0M
IV , differs from the volume associated with the mass, 0

IV , as in Eq. (2.17). 

The second term on the RHS of Eq. (2.29) is the contribution of the slave particle stresses 

to the master particle forces. The discrete equations of motion, Eq. (2.17), are solved only 

at the master particles. 

2.5.3 Insertion of Stress Points 

We introduce a simple technique of finite element mapping to insert stress points 

and to calculate volumes associated with master particles and stress points.  

With current powerful finite element mesh generation software it is easy to 

construct triangular or tetrahedral meshes in the reference configuration for any given 

problem. The nodes can be taken as master particles in meshfree particle methods.  In 

finite element methods, the reference configuration can be mapped from the parent 

configuration [33] via ( )ξXX =  where ξ  represents coordinates in the parent 

(isoparametric) configuration. If stress point I  is at the center of an equilateral triangle 

ABC  in the parent configuration as shown in Fig. 2.4, the coordinate of this stress point 

in the reference configuration can be obtained via the finite element approximation, 

which is  

 ( ) ( )S M
I J I J

J
N=∑X ξ ξ X ,    CBAJ ,,=  (2.31) 
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where ( )ξN  are finite element interpolation functions evaluated in the parent 

configuration.  In other words, stress points are also inserted at the centers of triangular 

meshes in the reference configuration.   

 

  

 Figure 2.4: The finite element mapping technique 

 

In the parent configuration, it is easy to calculate volume 0S
IV  of the Voronoi cell, 

which is associated with stress point I . Through the isoparametric mapping technique, 

the volume associated with this stress point in the reference configuration is calculated by: 

 0S S
I IV JV=  (2.32) 

where J  is the determinant of the Jacobin matrix of the isoparametric mapping, and  

 ( ) ( ) ( )J M
I J

J
I I

N ξ∂ ∂⎛ ⎞
= = ∑⎜ ⎟∂ ∂⎝ ⎠

X ξ
J ξ X

ξ ξξ ξ
 (2.33) 

A similar procedure can be performed to calculate volumes associated with master 

particles in the reference configuration.  
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2.6 Explicit Time Integration 

We have seen that the momentum equation can be discretized as follows for a 

Lagrangian mesh 

 ext int= − =Mu f f f&&  (2.34) 

The above equations are ordinary differential equations in time. 

To solve Eq. (2.34), we employ explicit time integration. The most widely used 

explicit method is the central difference method with a diagonal or lumped mass matrix. 

We start at time 0=t  using the time step of tΔ , so that at time step n , tnt Δ= . 

The value of a function at tnΔ  is denoted by a superscript n , i.e., ( )tnn Δ≡ uu . In the 

central difference method, the velocities are approximated by 

 ( ) ( )
t

tttt
t

nn
nn

Δ
Δ−−Δ+

=
Δ
−

==
−+

+ 222121
21 uuuuvu&  (2.35) 

where the second equality is included to clarify the notation. Half-time-step values are 

used for computing the velocities. The accelerations and velocities are given by 

 
t

nn
nn

Δ
−

==
−+ 2121 vvau&&     or    21121 −−+ +Δ= nnn t vfMv  (2.36) 

where the equation on the right is obtained by combing the equation on the left with Eq. 

(2.34). The value of the derivative at the center of a time interval is obtained from the 

difference of the function values at the ends of the interval, hence the name central 

difference formulas.  

Updating for the displacement by Eq. (2.36) does not require any solution of 

algebraic equations. Thus, in a sense, explicit integration is simpler than static linear 

stress analysis. The first time step is somewhat different form the others because only a 
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half-step is taken. This enables the integration to correctly account for the initial 

conditions on the stresses and velocities. 

Most of the computation time is in computing the nodal forces, particular the 

internal nodal forces. The nodal forces are computed particle by particle. The 

computation of the internal nodal forces involves the application of the equations that are 

left in strong form, the strain equation and the constitutive equation. This is followed by 

the evaluation of the internal nodal forces from the stress by a relationship emanating 

from the weak form of the momentum equation. 

The disadvantage of explicit integration is that the time step must be below a 

critical value or the solution “blows up” due to a numerical instability. The critical time 

step is given by 

 
0

0

c
l

tc =Δ  (2.37) 

where 0l  is the initial distance between two particles and 0c  is the wave speed given by 

0
2
0 ρeEc = , and eE  is the effective Young’s modulus of the material. 

2.7 Stability of Meshfree Particle Methods 

There are two sources of instability exist in meshfree particle methods: (1) rank 

deficiency of the discrete equations, and (2) distortion of the material instability. The 

latter one leads to the so-called tensile instability. Belytschko and Xiao gave a linearized 

stability analysis of the discrete equations for the meshfree particle methods [35]; this is 

often called a von Neumann stability analysis. In their studies, an infinite slab under a 

uniform state of stress was considered. The solution, i.e. the displacement, was perturbed 

by harmonics of various wavelengths as 
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0i t ie ω κ+ ⋅= n Xu g%  (2.38) 

where u%  is the plane wave perturbation, g  is the polarization of the wave, ω  is the 

frequency, κ  is the wave number and 0n  is the normal direction of the wave front [90]. 

The response is considered stable if the perturbation decays or remains constant in 

amplitude or unstable if it grows when time goes infinite.  

When using the nodal integration scheme, instability occurs in meshfree particle 

methods due to rank deficiency of the discretization of the divergence. This instability 

makes the equilibrium equations singular regardless of the value of the stress. Such 

instability occurs when the nodal integration scheme is employed. Stress points are 

inserted to eliminate this instability. However, tensile instability occurs in meshfree 

particle methods as long as Eulerian kernels are employed even when the stress point 

integration scheme is utilized. Xiao and Belytschko [39] performed material stability 

analysis of meshfree particle methods. They pointed out that Eulerian kernels severely 

distorted the material instability while Lagrangian kernels can exactly reproduce material 

instability. Rabczuk et al. [40] concluded that a meshfree particle method with 

Lagrangian kernels and stress point integration is a stable numerical method. 

2.8 Summary and Conclusions 

Meshfree particle methods have been briefly introduced. Based on the governing 

equations, the weak forms for particle methods are derived and two different domain 

integration schemes and explicit time integration scheme are highlighted. In addition, the 

brief discussion about the stability of meshfree particle methods concluded that a 

meshfree particle method with Lagrangian kernels and stress point integration is a stable 

numerical method. 
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CHAPTER 3  

TEMPERATURE-DEPENDENT HOMOGENIZATION TECHNIQUE 

3.1 Cauchy-Born (CB) Rule 

Generally, in a nanoscale continuum model, the potential energy depends on the 

elongations and angle changes of the atomic bonds underlying the discretized continuum 

domain via the conventional CB rule [41, 42]. The CB rule states that the deformation is 

locally homogeneous. Therefore, the atomic-level lattice follows the deformation given 

by the macroscopically imposed deformation gradient. For example, an undeformed 

lattice vector A in the reference configuration can be mapped into a deformed lattice 

vector a in the current configuration via  

 FAa = , 
X
xF

∂
∂

=  (3.1) 

where F is the gradient of deformation, x  are Eulerian coordinates and X  are 

Lagrangian coordinates. Consequently, the total potential energy, also called the strain 

energy of the continuum model, in the reference configuration 0Ω  is defined by 

 ( )
0

0C CW w d
Ω

= Ω∫ F  (3.2) 

where Cw  is the strain energy per unit volume, i.e. strain energy density. Based on 

nonlinear continuum mechanics [33], the nominal stress, P , is obtained from the first 

derivative of the strain energy density to the transpose of the gradient of deformation  

 ( )
T

Cw∂
=

∂
F

P
F

 (3.3) 

The above equation usually serves as a constitutive relation implemented into 

continuum models in either hierarchical or concurrent multiscale modeling of crystalline 
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solids. With respect to the deformation gradients, the first elasticity tensor or first 

tangential stiffness matrix [33] can be obtained from the second derivatives of the strain 

energy density as 

 ( )2

T T
Cw∂

=
∂ ∂

F
C

F F
 (3.4) 

If long distance interatomic interactions, such as nonbonded interaction, are 

considered, the van der Waals energy must be included in the molecular mechanics 

potential.  Further research is needed to derive the continuum strain energy from the 

atomic-level potential and to modify the CB rule. Since the effects of long distance 

interatomic interactions on nanoscale mechanical behaviors of crystalline solids are not 

as significant as those of short distance interatomic interactions, we only consider short 

distance interatomic interactions in this thesis. 

The conventional CB rule has some difficulties for many important situations, 

such as in single-layer curved crystalline sheets. Arroyo and Belytschko [26, 27] 

developed an extension of the CB rule – the exponential CB rule. The objective of this 

extension is to account for the fact that the deformation gradient maps the tangent space 

of the undeformed surface to the tangent space of the deformed surface. 

3.2 Temperature-related Cauchy-Born (TCB) Rule 

It has been shown that physical phenomena at the nanoscale, especially 

nanostructured material failure, are temperature-related. Therefore, it is important to 

consider temperature effects in the continuum model when performing multiscale 

modeling and simulation. Temperature effects can be introduced by employing potentials 

that incorporate the entropy due to lattice vibration, for example, in a local Einstein 
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description [28, 43]. This is conceptually similar to the coarse graining of vibrations in 

first-principles thermodynamics [44]. In the proposed TCB rule, we consider the 

Helmholtz free energy, i.e. the effective energy in [22, 28, 45, 46], rather than the 

potential energy at the nanoscale. Helmholtz free energy is the amount of thermodynamic 

energy which can be converted into work at constant temperature and volume [47]. It can 

be written as 

 ( )H CF W TS= −F  (3.5) 

where HF  is the atomic-level free energy of a crystalline solid, ( )CW F  is the potential 

energy of the atoms in their equilibrium positions, T  is the system temperature and S  is 

the system entropy.  

To obtain reasonable accuracy for the Helmholtz free energy calculation in the 

nanoscale continuum model, the motion of an atom in a solid is assumed to be harmonic 

[48]. The entropy of the system of N  atoms can be expressed as 

 
3

1
ln 2sinh

2

N
n

B
n B

S
T

ωκ
κ=

⎡ ⎤⎛ ⎞
= − ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ h  (3.6) 

where 231.38 10 J KBκ
−= ×  is the Boltzmann constant , / 2h π=h , 346.63 10 J sh −= × ⋅  is 

Planck’s constant, nω  are the vibration frequencies of the system and are determined 

from the eigenvalues of the dynamical matrix, D , which is calculated as   

 
21 C

I J
I JI J

WD
x xm mα β

α β

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (3.7) 

where Ix α  is the vibrational coordinate in direction α  for atom I , and Im  is the mass of 

atom I . 
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This quasiharmonic approximation is quite accurate and gives results that are in 

good agreements with the Monte Carlo simulations [49]. However, the diagonalization of 

the  3 3N N×  matrix is computationally expensive. In order to avoid this difficulty, the 

local harmonic approximation [50] has been introduced to neglect coupled vibration of 

different atoms. Consequently, the atomic-level free energy is expressed as: 

 ( )
3

1 1
ln 2sinh

2

N
Ik

H C B
I k B

F W T
T

ωκ
κ= =

⎡ ⎤⎛ ⎞
= + ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑∑F h  (3.8) 

Foiles [49] and Najafabadi et al. [51] evaluated the accuracy of local harmonic 

approximation and concluded that, even though the local harmonic approximation 

somewhat underestimates the temperature dependence, it still provides a reasonable 

compromise between accuracy and computational demands. However, they also pointed 

out that the accuracy of this approximation is sensitive to the anharmonicities in 

interatomic potentials. 

LeSar et al. further introduced the high-temperature classical limit [50],  

 sinh
2 2

Ik Ik

B BT T
ω ω
κ κ

⎛ ⎞
≈⎜ ⎟

⎝ ⎠

h h  (3.9) 

such that the Helmholtz free energy in Eq. (3.8) becomes 

 ( )
1

2

1
ln

N n
I

H C B
I B

DF W n T
T

κ
κ=

⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟
⎝ ⎠

∑F h  (3.10) 

where  
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I I I
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m x xα β

⎛ ⎞∂
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 (3.11) 

is the local dynamical matrix and  
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2n

I Ik
k

D ω⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∏  (3.12) 

is the determinant of the local dynamical matrix, where n  is the number of degrees of 

freedom per atom. 

In continuum approach to a crystalline solid with the TCB rule, we assume that 

atoms not only have locally homogeneous deformation as in the conventional CB rule but 

also have the same vibration mode locally [52] at a given temperature. Therefore, all the 

local atoms have the same dynamical matrix that is a function of the deformation gradient. 

In summary, the proposed TCB rule assumes:  

1) atoms have locally homogeneous deformation;  

2) the vibration of atoms is harmonic;  

3) atoms have the same local vibration modes;  

4) coupled vibration of different atoms is negligible.  

In the continuum model of a crystalline solid that contains N  atoms at a 

temperature field of ( )T X , the total free energy, HW , of the crystalline solid with the 

continuum model can be expressed as follows, 
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( )( )

( ) ( )( )
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 (3.13) 

where nρ  is the number of atoms per unit volume; qN  is the number of quadrature points 

in the continuum model; and iA  is the volume associated with one quadrature point, q
iX , 
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which represents q
in  atoms. The first term on the RHS of the above equation is the 

continuum level strain energy when temperature equals to zero. In the continuum model, 

the deformation gradient and the temperature are evaluated at each quadrature point. 

With the TCB technique, all the bonds and atoms in iA  are assumed to be at the same 

deformation and temperature. Consequently, the strain energy density and the dynamical 

matrix can be calculated using the unit cell model for each quadrature point.   

As a difference from other research [22, 28, 45, 46, 53], we modify Eq. (3.3) to 

calculate the continuum-level nominal stress for continuum approach to finite-

temperature nano systems as follows, 

 ( ) ( )
T

,
, Hw T
T

∂
=

∂
F

P F
F

 (3.14) 

where Hw  is the free energy density. It can be written as 

 ( ) ( )
0

1, ,H Hw T W T
V

=F F  (3.15) 

and is a function of the deformation gradient and the temperature, where 0V  is the system 

volume. In a periodic nanostructure, we always calculate the free energy density in a unit 

cell. In this case, HW  and 0V are the total free energy and volume of the unit cell 

respectively. Eq. (3.14) can serve as a temperature-related constitutive relation that is 

implemented in most hierarchical and concurrent multiscale methods to investigate 

temperature-related physical behavior of nanostructured materials. 

3.3 Verification of the TCB Rule 

To verify the proposed TCB rule, we perform stress analyses of various 

crystalline solids at any given deformation gradient and temperature using the continuum 
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approximation with the TCB rule. Then, we compare the continuum-level Cauchy 

stresses with the atomic-level ones (Appendix D) from molecular simulations. It should 

be noted here that the simulated objects are assumed to be canonical ensembles subject to 

any given deformation and temperature. Both Monte Carlo method and molecular 

dynamics are feasible to result in the same stress state of canonical ensembles at thermal 

equilibrium. In this thesis, we employ molecular dynamics (Appendix A) with the 

periodic boundary conditions and the Berendsen thermostat [54] (Appendix B).  

3.3.1 One-dimensional Molecule Chain 

 

 Figure 3.1: One-dimensional molecule chain 

 

We first consider a one-dimensional molecule chain, which contains 100 atoms, 

each of which has a mass of 26
0 1.993 10 kgm −= × . The following Lennard-Jones 6-12 

potential function is employed to describe the interatomic interaction between nearest 

neighbored atoms 

 ( )
12 6

0 01 14
4 2

l ll
l l

ϕ ε
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (3.16) 

where 0 1nml =  is the undeformed bond length, and 188.25 10 Jε −= ×  is the depth of the 

energy well. Fig. 3.1 gave the geometry of the one-dimensional molecule chain. In this 

model we have N  atoms or molecules in total. When this molecular chain is under a 
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deformation gradient of F , which is a scalar in one dimension, the length of the 

deformed bond is 0l Fl=  since the deformation is assumed to be homogeneous.  

The unit cell of this molecule chain contains one atom and two half-bonds. The 

free energy density for this unit cell under temperature T  can be calculated as 
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( ) ( ) ( )
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h

h
 (3.17) 

where D  is the determinant of the dynamical matrix which can be written as 
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 (3.18) 

The nominal stress, derived from the free energy density can be calculated as 
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′′

 (3.19)  

Fig. 3.2 shows the comparison of atomic-level and continuum-level Cauchy 

stresses with temperatures when a given deformation gradient is applied on the molecule 

chain. Molecular dynamics elucidates that the lower stress is obtained at a higher 

temperature due to the thermal expansion. However, since the continuum approximation 

with the conventional CB rule does not include temperature effects, its derived Cauchy 

stresses are independent of the temperature and become a constant in Fig. 3.2.  When the 

TCB rule is employed, the Cauchy stresses are temperature-related and are in accord with 

molecular dynamics results very well. 
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 (a) 1.001F = ; (b) 1.005F = ; (c) 1.01F =  

Figure 3.2: Comparison of Cauchy stress with temperature in molecule chain 

 

3.3.2 Two-dimensional Hexagonal-triangular Lattice 

We then study a plate of two-dimensional Lennard-Jones crystal with a 

hexagonal-triangular lattice as shown in Fig. 3.3. This molecular structure was used by 

Gao [59] to study the local limiting speed in dynamic fractures. The nanoplate contains 

1116 atoms, and its length and width are 30nm, respectively. The interatomic Lennard-

Jones 6-12 potential and its parameters are the same as in Eq. (3.16). When the nanoplate 

undergoes a deformation gradient, 11 12

21 22

F F
F F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

F , all the unit cells are assumed to be 

deformed identically, and all the atoms have the same harmonic vibration mode via the 

TCB rule. Therefore, the strain energy density at the temperature of 0K can be calculated 
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from the potential of the unit cell, as well as the dynamical matrix of the atom located in 

the center of the unit cell.  From Fig. 3.3, we can see that there are 2 atoms in the unit cell, 

including one whole atom in the center and 4 quarter-atoms shared with adjacent unit 

cells on the boundary. And there are 6 bonds, including 4 whole bonds and 4 half-bonds 

which are also shared with neighboring unit cell on the boundary. For each atom, there 

are 6 bonds connected to it but also shared with other adjacent atoms. So, there are 3 

independent bonds for each atom in average which are shown in Fig. 3.4. The area for a 

unit cell is 2
0 03A l= , so if we only consider the pair-potentials, the strain energy density 

calculated from unit cell is 

 ( ) ( ) ( )1 2 32
0

2
3Cw l l l
l

ϕ ϕ ϕ= + +⎡ ⎤⎣ ⎦  (3.20) 

 

  

 Figure 3.3: A two-dimensional crystal with a hexagonal-triangular lattice 

  

The local dynamical matrix for the atom located in the center of the unit cell in Eq. 

(3.11), can also be computed from the second derivative of strain energy density with 

respect to the material coordinates. They are:  
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where 2 2
1 2k k kl r r= +  ( 1, 2,3k = ) and 

 11 11 0r F l= , 12 12 0r F l=  

 21 11 12 0
1 3
2 2

r F F l
⎛ ⎞
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⎝ ⎠

, 22 21 22 0
1 3
2 2

r F F l
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

, (3.22) 

 31 11 12 0
1 3
2 2

r F F l
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

, 32 21 22 0
1 3
2 2

r F F l
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 

Here we omit the mass and volume parts in the dynamical matrix, since scalar parameters 

in logarithm function do not affect the result in the derivatives. We will keep this explicit 

notation unless we mention. 

 

  

 Figure 3.4: Deformation of a unit cell of the hexagonal-triangular lattice 
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The free energy density can be computed as 
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Then, the continuum-level nominal stress, from Eq. (3.14), is 

 T T2
03

C Bw T D
Dl

κ∂ ∂
= +
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P
F F

 (3.24) 

The first term on RHS is the nominal stress from traditional CB rule. Using Eq. (3.20), it 

can be written further as 
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w ll
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∑F F

 (3.25) 

We only keep the normal vibration modes and omit the off-diagonal components 

in dynamical matrix since they are pretty small compare to the diagonal parts. So, in a 

two-dimensional lattice 

 11 22D D D=  (3.26) 

and 

 11 22
22 11T T T

D DD D D∂ ∂∂
= +

∂ ∂ ∂F F F
 (3.27) 

The first derivative of the diagonal components with respect to the deformation gradient, 

from Eq. (3.21), is 
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 (3.28) 

The atomic-level and continuum-level Cauchy stresses are computed via Eq. (D.1) 

and Eq. (D.5) (Appendix D) for any given deformation gradient and temperature. Fig. 3.4 
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shows the comparison of each component of Cauchy stresses at various temperatures 

when two different deformation gradients are given. We also calculate Cauchy stresses 

using the continuum model with the conventional CB rule to demonstrate the advantages 

of the TCB rule. The continuum approximation with the conventional CB rule gives 

constant stresses at different temperatures since temperature effects are not considered in 

the CB rule. If temperature effects are considered, the continuum-level normal stresses, 

calculated based on the TCB rule, decrease with the increasing temperature due to 

thermal expansion. The results agree with the molecular dynamics solutions. Shear 

stresses calculated from continuum approximations with either the conventional CB or 

the TCB rule are supported by molecular dynamics simulation because temperature has 

no effects on shear stresses. 
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(a) 
1.001 0.0

0.0 1.0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

F ; (b) 
1.001 0.002

0.0 1.0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

F  

Figure 3.5: Cauchy stress components with temperature in the hexagonal-

triangular lattice 
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3.3.3 Graphene Sheet 

As a more practical example, we consider temperature effects on stress analysis of 

the graphene sheet. Fig. 3.6 shows the honeycomb multi-lattice of a graphene sheet with 

its unit cell in the dashed box. There are three inequivalent bonds, 0iA  ( 1,2,3i = ) in the 

reference configuration, i.e. the undeformed configuration. It should be noted that the 

graphene sheet as a Bravais multi-lattice, has two basic nuclei: a black dot and a white 

dot shown in Fig. 3.6. Consequently, when the graphene sheet is subject to a 

homogeneous deformation, one cannot use only one basic nucleus and two simple 

Bravais lattice vectors to define the entire lattice. Therefore, a shift vector, η , known as 

the inner displacement [55], must be introduced as shown in Fig. 3.6 to define the relative 

displacement of the basic nuclei. The inner displacement represents an internal model of 

deformation in the unit cell instead of the homogeneous deformation sustained by the 

entire graphene sheet. Then, the deformed lattice vectors il  is written as  

 0i i= +l l η  (3.29)  

Since inner displacements are in the internal equilibrium, we neglect the 

temperature effects on inner displacements. Similarly to [55], the inner displacement is 

calculated by minimizing the strain energy density with respect to η  for a given 

deformation of the lattice, i.e. 

 ( ) ( )( ) ( ),
arg min , 0C

C

w
w

∂
= ⇒ =

∂η
F

F η
η F F η

η
 (3.30) 

When a graphene sheet is subject to a homogeneous deformation and a particular 

temperature, the positions of the atoms in the current configuration, i.e. the deformed 
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configuration, are expressed in terms of the deformation gradient F  and the inner 

displacement η . Therefore, the total free energy of the graphene sheet is computed as 

 ( ) ( )
( )( )

1
2

0

,
, , , ln

n

H C B
B

D
W T A w nN T

T
κ

κ

⎡ ⎤
⎢ ⎥= + ⎢ ⎥
⎢ ⎥⎣ ⎦

F η
F η F η

h
 (3.31) 

where 0A  is the area of the simulated graphene sheet, and N  is the total carbon atoms.  

 

  

 Figure 3.6: A graphene sheet and its unit cell 

 

The inner displacement can be eliminated at the constitutive level using Eq. (3.30). 

After this inner relaxation, the total free energy can be written as a function of F  and T  

only 
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  ( ) ( )( )ˆ ˆ, , ,H HW T W T=F F η F  (3.32) 

Note that, while a closed form expression for the potential HW  is available, the 

evaluation of ( )ˆ ,HW TF  requires the solution of a bivariate minimization problem, which 

can be solved numerically by Newton’s method or Conjugate Gradient method 

(Appendix C). The nominal stress, which the first derivative of the free energy density, 

can be benefit from the inner relaxation, 

 ( ) T T
ˆ

ˆ
, H Hw wT

=

∂ ∂
= =
∂ ∂ η η

P F
F F

 (3.33) 

where 
0

H
H

Ww
A

=  is the density of free energy, and therefore this derivative can be 

computed in closed-form from the function HW .  

Since the effects from the angle-bending potential are significant in the graphene 

sheet, we need to consider both band-stretching potential and angle-bending potential. 

We use a modified Morse potential function [56] as the follows to describe the 

interatomic interaction, 
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⎡ ⎤= − + −⎣ ⎦

 (3.34)  

where sϕ  is the bond energy due to bond stretching or compressing, aϕ  is the bond 

energy due to bond angle-bending, l  is the current bond length, and θ  is the angle of two 

adjacent bonds representing a standard deformation measure in molecular mechanics.  
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 Figure 3.7: Unit cell of grapheme sheet 

 

 From the zoom in of the unit cell, which is Fig. 3.7, we can see that there are 2 

atoms in the unit cell, including one whole atom in the center, 1 half-atom on the right 

boundary and 2 quarter-atoms on the left boundary shared with adjacent unit cells. And 

there are 3 whole bonds in the unit cell, which means for each atom, there are 1.5 bonds 

in average. Also, there are 9 angles in the unit cell, which are 1θ  to 3θ  and 1ϕ  to 6ϕ . But 

they are not all independent. From the geometry, we can obtain 
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+=
+=
+=

 (3.35) 
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That means for each atom, only three of the angles, 1θ  to 3θ  are independent.  

0x  to 3x  are the realistic positions of the atoms while 0′x  is the position for the 

central atom if there is no inner displacement (internal shift) vector η . Follow the 

geometry, we can obtain 

 0 0′= −x x η  (3.36) 

and 
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For the angles, we can obtain 

 2 3
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2 3
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θ
⎛ ⎞
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 1 2
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1 2

arccos
l l

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

l l�  (3.42) 

where 1l , 2l , 3l  are the length of 1l , 2l  and 3l , ( )�  denotes the inner product of two 

vectors, for example,  in a two-dimensional problem 
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 1 1 2 2
m n m n m nl l l l= +l l�  (3.43) 

The area for a unit cell is 2
0 0

3 3
2

A l= . So, the nominal stresses can be written as 

 T T2
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= +
∂ ∂

P
F F

 (3.44) 

where Cw  and D  are the function of the potentials from both bond stretching and angle 

bending. They can be written as 
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where 0
ix  and 0

jx  are the i  and j  component of vector 0x . 

The calculations of the first term on the RHS of Eq. (3.45) and Eq. (3.46) are 

similar to what we showed in previous section. Here we only derive the formula for the 

second term. The nominal stress from strain energy at 0K  can be obtained by 

 ( ) ( )
3 3

T T
0 0

1 1 k
s a k k

k kA A
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 (3.47) 

where 
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Here m  and n  are the indices of the bonds belong to angle kθ . For the nominal stress 

from temperature part, the elimination of the off-diagonal components is also conducted 

in the dynamical matrix to simplify the expression. 
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2 223
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D
x x
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where 
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 (3.51) 

and 
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 (3.52) 

The derivatives of cos kθ  with respect to 0
ix  are 
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and 

 
( )

( ) ( )
2

2 2
2 3 3

0

2 2

2 2 3 3

2cos 2

3 3 2                 

mi nik
m ni n mii

m n m n

m n n mi m ni mi ni m n

m n m n m n n m

r r
l r l r

l l l lx

l r l r r r l l
l l l l l l l l

θ +∂
= − +

∂

⎛ ⎞
+ + + − −⎜ ⎟

⎝ ⎠

l l�
 (3.54) 

And the derivative of the dynamical matrix with respect to the deformation gradient can 

be calculated through 
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and 
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 (3.59) 

The derivatives of cos kθ  with respect to 0
ix  and TF  are 
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and 
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= −⎜ ⎟∂ ∂ ∂⎝ ⎠F F F

 (3.66) 

In the numerical example, a graphene sheet of 800 atoms is considered to be 

subject to a deformation gradient of 
1.02 0.01
0.0 1.00

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

F . In our calculation, the 

parameters are: 

 10
0 1.42 10 ml −= × , 0 2.094radθ = , 

 196.03105 10 NmeD −= × , 102.625 10 /mβ = × , 

 18 21.13 10 Nm / radkθ
−= × , 40.754 / radsk =  

The calculated normal Cauchy stresses from molecular dynamics and the continuum 

approximation with either the conventional CB rule or the TCB rule are compared in Fig. 

3.8. We can also conclude that the continuum-level Cauchy stresses based on the 

continuum approximation with the TCB rule are in good agreement with those from 

molecular dynamics at various temperatures.  
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 Figure 3.8: Normal Cauchy stresses of a graphene sheet subject to a deformation gradient 

 

3.3.4 Three-dimensional Simple Cubic Lattice 

From Fig 3.8, we can know that in the unit cell of a three-dimensional simple 

cubic lattice, there is only one atom and 6 half-bonds. So, for each atom, there are 3 

independent bonds. Those three bonds are 
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l  (3.67) 
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l  (3.69) 

And the volume of the unit cell is 3
0 0V l= . In this case we do not consider the effects from 

angle-bending potential. 

A three-dimensional simple cubic lattice with each dimension of 5nm  is studied 

in this example. Fig. 3.8 shows the basic geometry of this cubic lattice and its unit cell. 

We still employ the Lennard-Jones 6-12 potential and the parameters are the same as in 

Eq.  (3.16).  

 

  

 Figure 3.9: Geometry of a cubic lattice and the unit cell 

  

Not to lose generality, we investigate the Cauchy stress evolution as the simulated 

lattice at various temperatures from 0K to 1500K and subject to the following 

deformation gradient, 
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1.01 0.05 0.03
0.0 1.02 0.04
0.0 0.0 1.03

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F  (3.70)  

Since there are no temperature effects on shear stresses, we only compare the 

normal Cauchy stresses from molecular dynamics simulation and those from the 

continuum approximation with either the CB rule or the TCB rule as shown in Tab. 3.1. 

With the consideration of temperature effects, the results from the continuum 

approximation with the TCB technique match the molecular dynamics solutions better 

than those from the continuum approximation with the CB rule.   

 

Temperature 
(K) 0 300 600 900 1200 1500 

CB 5128.15 5128.15 5128.15 5128.15 5128.15 5128.15 
TCB 5128.15 5092.47 5056.80 5021.12 4985.44 4949.77 xxσ  

(Mpa) MD 5128.15 5083.55 5055.32 5043.26 5023.87 4998.69 
        

CB 9734.92 9734.92 9734.92 9734.92 9734.92 9734.92 
TCB 9734.92 9695.06 9655.21 9615.35 9575.49 9535.63 yyσ  

(Mpa) MD 9734.92 9703.53 9668.00 9632.53 9597.25 9569.72 
        

CB 13035.51 13035.51 13035.51 13035.51 13035.51 13035.51
TCB 13035.51 12991.61 12947.70 12903.80 12859.89 12815.99zzσ  

(Mpa) MD 13035.51 13007.78 12978.02 12936.49 12900.09 12860.72
 

Table 3.1: Normal Cauchy stress components at various temperatures for a three-

dimensional simple cubic lattice subject to the deformation gradient in Eq. (3.70) 

 

3.4 Summary and Conclusions 

The temperature-related Cauchy-Born rule is developed as a new temperature-

dependent homogenization technique for multiscale modeling. With the consideration of 
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the free energy instead of the potential energy, the TCB rule assumes that atoms have 

locally harmonic motion in addition to homogeneous assumption. When employing the 

TCB rule in the nanoscale continuum approximation, the nominal stress can be explicitly 

computed as the first derivative of the Helmholtz free energy density to the transpose of 

the deformation gradient. Since the Helmholtz free energy is temperature-dependent, 

multiscale methods consisting of the TCB rule embedded continuum model can be used 

to elucidate temperature-related physical phenomena at the nanoscale. Stress analyses of 

canonical ensembles verify the continuum approximation with the TCB rule by 

comparing the calculated Cauchy stresses with the outcomes of molecular dynamics 

simulations. 
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CHAPTER 4  

NANOSCALE MESHFREE PARTICLE METHODS 

4.1 Implementation of the Homogenization Technique 

4.1.1 Implementation of the CB Rule 

With a homogenization technique, such as the CB rule, it is possible to impose the 

continuum mechanics methods to perform simulations at the nanoscale because the 

intrinsic properties of material can be sought at the atomic level and embedded in the 

continuum. Such methods are also called the hierarchical multiscale methods, or 

quasicontinuum method. Finite element methods are always used in multiscale methods 

with the implementation of the CB rule.  Since the meshfree particle methods are 

advantageous to treat large deformation problems as well as fracture problems, they will 

have potential to be used in nanoscale numerical modeling and simulation. The CB rule 

states the deformation is locally homogeneous, so it is assumed there is a constant 

gradient of deformation in each volume that is associated with a master particle or a 

stress point.  

  

 Figure 4.1: Quasicontinuum method 
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As the illustration in Fig. 4.1, an undeformed lattice vector A  in the reference 

configuration is mapped into a  in the current configuration by the gradient of 

deformation F  via FAa = . In the continuum model, the potential energy depends on the 

elongations and angle changes of the atomic bonds that underlie the volume of the master 

particles or stress points. Then, the nominal stresses, P , are computed as follows (should 

F be transposed?) 

 ( ) ( )( )
( )T

M
C IM

I M
I

w∂
=

∂

F X
P X

F X
,    ( ) ( )( )

( )T

S
C IS

I S
I

w∂
=

∂

F X
P X

F X
 (4.1) 

where Cw  is the potential energy density, and  

 ( ) ( )M
J IM M

I J
J

ω∂
=

∂∑
X

F X u
X

,    ( ) ( )S
J IS M

I J
J

ω∂
=

∂∑
X

F X u
X

 (4.2) 

are the deformation gradients at the master particle or stress point I . Eq. (4.1) serves as 

the constitutive equation for the meshfree particle methods based on atomistic potentials 

via the CB rule.  

4.1.2 Implementation of the TCB Rule 

When using meshfree particle methods for nanoscale simulation, the TCB rule 

results in a constitutive relationship due to molecular properties. As an instance, we 

consider a Voronoi cell CI  associated with a particle PI . PI  can be any master particle 

or stress points in the simulated domain. During the implementation of the TCB rule in 

meshfree particle methods, the following assumption and procedures are conducted: 

♦ The lattice in cell CI  is assumed to be subject to a deformation gradient as 

that of particle PI . Therefore, the strain energy density at zero temperature 

can be calculated via a unit cell. 
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♦ All the atoms in cell CI  are assumed to have the identical harmonic vibration 

mode. Then, a dynamical matrix can be calculated via the unit cell for all the 

atoms in this cell. 

♦ The molecular domain in cell CI  is assumed to be at a constant temperature 

as that of particle PI . The free energy density is thereafter computed via Eq. 

(3.13), and both master particles and stress points are quadrature points in 

meshfree particle methods. 

♦ Once free energy density is calculated, stresses of particles can be obtained 

through Eq. (3.14). Numerical integration will be performed to compute nodal 

forces using Eq. (2.18) and Eq. (2.19), and discrete equations, Eq.  (2.17), will 

be thereafter solved. 

♦ Consequently, the nominal stresses, P  , at master particles or stress points are 

computed as the follows  

 ( ) ( )( )
( )T

,
,

M
H IM

I M
I

w T
T

∂
=

∂

F X
P X

F X
,    ( ) ( )( )

( )T

,
,

S
H IS

I S
I

w T
T

∂
=

∂

F X
P X

F X
 (4.3) 

4.2 Modeling of Fracture at Nanoscale 

Meshfree particle methods have advantages in dealing with large deformation 

problems, and problems with moving discontinuities such as fracture mechanics. Such 

advantages will benefit the developed hierarchical multiscale method in which a 

meshfree particle method is employed as well as the TCB rule. In this thesis, we 

introduce visibility criterion and cohesive zone model in meshfree particle methods to 

model cracks at the nanoscale. 
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4.2.1 Visibility Criterion in Meshfree Particle Methods 

 

  

 Figure 4.2: Visibility criterion in meshfree particle methods 

 

A crack is modeled in meshfree particle method by defining a line segment 

internal to the domain as shown in Fig. 4.2. The domains of influence for particles near 

the crack are truncated whenever they intersect the crack surface so that a particle on one 

side of the crack will not affect particles on the opposite side of the crack. This technique 

was called the visibility criterion by Krysl and Belytschko [6]. The domain of influence 

can be considered as the line of sight and the crack can be considered as an opaque 

boundary. Whenever the line of sight meets the opaque boundary, the domain of 

influence is cut. In Fig. 4.2, if we search the neighbor particles for the particle I , the 

particle K  is included but not the particle J , since the latter is not visible for the particle 

I  due to the block of the crack. Other techniques, the diffraction method and the 
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transparency method [57], can provide continuous and smooth approximations near 

nonconvex boundaries. For simplification, we use the visibility criterion in this thesis.  

4.2.2 Cohesive Zone Model 

The crack propagation criterion used in our study is similar to the cohesive zone 

model [58]. As shown in Fig. 4.3, two crack tips should be monitored in the cohesive 

zone model: one is called physical tip which is a “real” crack tip in physics, and the other 

is mathematical tip which means it is a fictitious tip ahead of the physical one. The 

physical meanings of those two tips at the nanoscale are described as follows. It is known 

that crack propagation involves bond breakage so that the physical tip moves to the 

location where bonds are broken. Such a tip can be viewed as a “real” crack tip at the 

macroscale. On the other hand, the mathematical tip moves to the location where bonds 

become unstable. An unstable bond means that the interatomic bond force decreases 

while the bond length increases. Between the mathematical tip and the physical tip, there 

is a so-called cohesive zone, where the cohesive traction is applied on the two facets of 

the cohesive zone. It should be noted here that the mathematical tip is used to determine 

the domain of influence in meshfree particle methods via the visibility criterion.   

The cohesive traction, τ , are taken as external forces in meshfree particle 

simulation and they are derived as 

 ( )ˆ ,Hw T∂
=

∂
Δ

τ
Δ

 (4.4) 

where Δ  is the crack opening displacement vector. ( )ˆ ,Hw TΔ  is the free energy per unit 

length along the cohesive zone and can be calculated via the TCB rule.  
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 Figure 4.3: Cohesive zone model for crack propagation 

 

In meshfree particle methods, the cohesive tractions can be projected into 

consistent nodal forces [58] without introducing additional degree of freedom. In order to 

represent the surface geometry and calculate the cohesive traction, a parameterization 

must be implemented. As shown in Fig. 4.4, we define a local coordinate system in the 

reference configuration as well as the finite element points along the cohesive zone. The 

crack opening displacement vector Δ  may be written as 

 
( ) ( ) ( )

( ) ( )p p p p
P N P N

ξ ξ ξ

ω ξ ω ξ
+ −

+ −

∈ ∈

= −

= −∑ ∑
Δ u u

u u  (4.5) 

where ξ  are local coordinates; +u  and −u  are displacements of upper and lower facets of 

the cohesive zone, respectively;  pω  is the meshfree shape function associated with 

particle p  involved in the truncated neighborhood of the FE point, pu  is the 

displacement of particle p . In a variational setting, the contribution to the virtual work 

from cohesive traction is 
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0

Wδ δ
Γ

= ⋅∫ τ Δ  (4.6) 

where 0Γ  is the cohesive zone in the reference configuration;  and δΔ  is the variation in 

the surface opening displacement. On the other hand, in terms of the variation in the 

particle displacements, pu , the work increment due to the crack opening can be written 

as 

 p pWδ δ= ⋅∑ f u  (4.7) 

where  pf  is the particle force projected from the cohesive traction τ . Therefore, the 

nodal force due to the cohesive traction is computed as  

 
0

j
pi j

j pi

f d
u

τ
Γ

∂Δ
= Γ

∂∑∫  (4.8) 

where 

 forp ijj

p ijpi

p N
u p N

ω δ
ω δ

+

−

∂Δ ⎧ ∈
= ⎨−∂ ∈⎩

 (4.9) 

  

 Figure 4.4: Projection of cohesive traction 
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4.3 Applications 

4.3.1 One-dimensional Molecule Chain 

4.3.1.1 Continuum Model of Molecule Chain 

 

  

 Figure 4.5: A continuum model for a molecular chain with the meshfree particle methods 

 

A line of atoms as well as its continuum model in the reference (initial) 

configuration is considered here as shown in Fig. 4.5. The equilibrium bond length 

between neighboring atoms is 0l , and the length of the region AB  associated with the 

particle I  is 0L . We assume that only the nearest two atoms are attractive and repulsive 

with each other. Therefore, the molecular potential can be written as follows without 

considerations of external forces: 

 ( ) ( )
1

1
2 1

N N

i i i
i i

W x x lϕ ϕ
−

−
= =

= − =∑ ∑  (4.10) 

where N  is the total number of atoms; 1i i il x x+= −  is the current bond length. If we use 

IF  to denote the deformation gradient at particle I , all the deformed bonds in region AB  
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will have the same length, 0Il F l= , according to the assumption of the CB rule. One can 

write the potential density of the volume associated with particle I  based on the atomic 

level potential as 

 ( ) ( ) ( ) ( ) ( )
0

00

0 0 0 0

C I I
C I

L l
W F l F llw F

L L l l

ϕ
ϕ ϕ

= = = =  (4.11) 

Then, the nominal stress can be calculated as 

 ( ) ( ) ( )0

0

1C I I
I

I I

w F F l
P X

F l F
ϕ∂ ∂

= =
∂ ∂

 (4.12) 

As an instance, we use the Lennard-Jones (LJ) 6-12 potential to approach the 

interaction between the nearest atoms. The LJ 6-12 potential function is written as 

 
12 6

4
l l
σ σϕ ε

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (4.13) 

where ε  and σ  are constants chosen to fit material properties and l  is the distance 

between two atoms. ε  is the depth of the potential energy well. σ  is the value of l  

where the potential becomes zero and 1/ 6
02 lσ −= . The potential energy density at particle 

I  can be written as follows from Eq. (4.11): 

 ( ) ( ) 12 6
0 12 6

0 0 0 0

4I
C I I I

F l
w F F F

l l l l
ϕ ε σ σ− −

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= = −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.14) 

Therefore, the nominal stress at particle I  can be obtained as 

 ( )
6 12

6 7 12 13
0 0 0

4 6 12C
I

I I I

wP X
F l l F l F

ε σ σ⎡ ⎤∂
= = −⎢ ⎥∂ ⎣ ⎦

 (4.15) 

Wave propagation along a one-dimensional molecule chain is studied by using 

molecular dynamics and the meshfree particle methods with quasicontinuum 
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implementation separately. The molecule chain contains 2001 atoms. 101 particles are 

used in the meshfree particle simulation. The L-J (6-12) potential function is used to 

approach the interaction between the nearest atoms. The constants are chosen as: 

103.4 10 mσ −= ×  and 211.65 10 Jε −= × . The mass of each atom is set to be 103.8 10 kg−× . 

In the meshfree particle methods, the nominal stress can be obtained from Eq. (4.15). Fig. 

4.6 shows the comparison of the calculated wave configurations at 0.02nst = , from the 

molecular dynamics simulation and the meshfree particle methods, when an initial cosine 

shaped wave is given.  We can see that they are in accord.  

 

  

        (a) molecular dynamics                          (b) meshfree particle method 

 Figure 4.6: Wave propagation in a molecule chain 

 

4.3.1.2 Overlapping of Continuum and Discrete Model of Molecule Chain 

With the development of multiscale modeling at the nanoscale, Xiao and 

Belytschko [20] proposed a bridging domain coupling method.  In this thesis, this 

technique is used to develop a concurrent multiscale model in which the meshfree 
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particle method is coupled with molecular dynamics.  In expressing the total Hamiltonian 

of the system, a scaling parameter β  in the bridging domain, 0
intΩ , which is the 

overlapping domain between the molecular domain, M
0Ω , and the continuum domain, 

C
0Ω , as shown in Fig. 4.7, is employed. The Hamiltonian, H , for the complete domain is 

taken to be a linear combination of the molecular and continuum Hamiltonians, as shown 

in  

 
( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( )
0

11
2

11 1
2

M C
I I I I I M I

I I

I I I I C
I

H H H m W

M w d

β β β β

β β
Ω

= + − = ⋅ +

+ − ⋅ + − Ω

∑ ∑

∑ ∫

X d d X X

X u u X F X

& &

& &

 (4.16) 

where Im  and IM  are mass for atoms and master particles, respectively.  MW  is the 

potential function in the molecular model. MH  and CH  are molecular and continuum 

Hamiltonians, respectively. d  is atomic displacement and u  is the continuum 

displacement.  

 

  

 Figure 4.7: A bridging coupling model for a molecular chain 

 

The constraints in the bridging domain are 
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 { } ( ){ } ( ) 0I iI i I iI J I iJ iI
J

g u d u dω⎧ ⎫= = − = − =⎨ ⎬
⎩ ⎭
∑g X X  (4.17) 

i.e. the atomic displacements, d , are required to conform to the continuum displacements, 

u , at the positions of the atoms. The continuum displacement field can be obtained from 

the meshfree particle approximation as Eq. (2.6).  The constraints are applied to all 

components of the displacements. With the Lagrange multiplier method, the total 

Hamiltonian is written as 

 T T
L I I

I
H H H= + = +∑λ g λ g  (4.18) 

where { }iII λ=λ  is a vector of Lagrange multipliers. Note that the Lagrange multipliers 

are assigned to the discrete positions of atoms in the bridging domain. 

 

  

 Figure 4.8: The initial wave in a molecule chain  

 

The discrete equations can be derived from Eq. (4.18) via classical Hamiltonian 

mechanics. In equations of motion there exists constraint forces applied on the 

atoms/particles in the bridging domain besides external and internal forces. Xiao and 
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Belytschko [20] developed an explicit time integration algorithm. At first, so-called trial 

velocities are obtained by solving equations of motion independently in the continuum 

and molecular domains without the consideration of constraints. Then, constraints are 

applied to calculate the Lagrange multipliers. Finally, the constraint forces are considered 

to correct the velocities of atoms/particles in the bridging domain. 

In the bridging domain coupling modeling of this molecule chain, there are 1001 

atoms in molecular domain and 100 master particles in continuum domain. The initial 

wave is the combination of high frequency and low frequency waves as shown in Fig. 4.8 

in the molecular domain.  

A handshake technique [14] was developed for coupling a finite element method 

and molecular dynamics.  In that method, the element size was graded down to the lattice 

spacing in the handshake region.  This technique will result in a non-physical 

phenomenon as shown in Fig. 4.9(a) at the interface between the continuum domain and 

the molecular domain if the artificial viscosity is not applied. We can see that high 

frequency waves are reflected while the low frequency wave passes the continuum 

domain.  Such a phenomenon is also called spurious wave reflection.  However, with the 

bridging domain coupling technique, the spurious wave reflection can be eliminated as 

shown in Fig. 4.9(b).   
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 (a) handshake method 

 

  

 (b) bridging domain coupling method 

 Figure 4.9: Concurrent multiscale simulation of a molecule chain 
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4.3.2 Two-dimensional Nanobeam 

We consider a 2-D molecular structure with hexagonal-triangular lattices as 

shown in Fig. 4.10. A pair potential function of ( )lϕ  is used here to describe the nearest-

neighbor interatomic interaction. l  denotes the bond length and 0l l=  when the bond is 

not stretched i.e. when the bond is at the equilibrium state. Fig. 4.10 also shows that a 

rectangle cell is set as a unit cell to calculate the continuum properties of the molecular 

structure. 

 

   

 Figure 4.10: A continuum material with hexagonal-triangular molecular structure 

 

We assume that the volume associated with a particle contains a large number of 

such unit cells. If a unit cell is under the deformation with the deformation gradient F , 

then there are three types of deformed bonds as shown in Fig. 3.4. Therefore, the strain 

energy per undeformed unit area (strain energy density) in such a unit cell is 
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 ( ) ( ) ( )1 2 3
0

2
3Cw l l l
l

ϕ ϕ ϕ= + +⎡ ⎤⎣ ⎦  (4.19) 

where 1l , 2l , 3l  can be described by deformation gradient F  based on the geometric 

relations, one can find that 

 2 2
1 0 11 21l l F F= +  

 2 2
2 0 11 12 21 22

1 3 1 3( ) ( )
2 2 2 2

l l F F F F= − + −  (4.20) 

 2 2
3 0 11 12 21 22

1 3 1 3( ) ( )
2 2 2 2

l l F F F F= + + +  

The nominal stress P  is the first derivative of strain energy density with respect 

to the transpose of the deformation gradient, and one can have 
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 (4.21) 

and the components of the stress are 
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Correspondingly, the first tangential stiffness matrix can be written as 

 
2

T T T
Cw∂∂

= =
∂ ∂ ∂

PC
F F F

 (4.22) 

4.3.2.1 Bending of a Nanobeam 

In this example, we consider the bending of a nano cantilever beam. The beam 

contains 5140 atoms as shown in Fig. 4.12 where 270nmL =  and 15.6nmH = . One end 

of the beam is fixed. A quadratic potential function is used to approximate the interaction 

between nearest atoms, 

 ( ) ( )2
0

1
2

l k l lϕ = −  (4.23) 

where 10000N/mk =  and 0 1nml = .  

We use the meshfree particle method to simulate the bending of this nanobeam, 

which is under the load of a prescribed displacement as shown in Fig. 4.11. There are 250 

particles used in the simulation. In the meshfree particle method, the nominal stress and 

tangential stiffness matrix can be calculated when substituting Eq. (4.23) into Eq. (4.21) 

and Eq. (4.22). During the simulation, the prescribed displacement will be increased by 

3.6nmdΔ =  per calculation step. After 50 steps, the nanobeam will be bent as the final 

configuration with the shear stress distribution shown in Fig. 4.12(a). 

  

 Figure 4.11: A nano cantilever beam  
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We also show the molecular mechanics calculation result for comparison. One 

can see that the outcome in Fig. 4.12(b) supports the meshfree particle method result. 

When different numbers of particles are used in the meshfree particle method simulations, 

Fig. 4.13 shows the evolution of the calculated nanobeam potential compared with the 

molecular mechanics result. We can see that the meshfree particle method with 250 

particles gives a consistent response with the molecular mechanics calculation. If 1000 or 

more particles are used in the simulations, the evolution of the nanobeam potential is 

almost identical to the one from the molecular mechanics calculation. 

We study the convergence by using the 2L  error in displacement for the nanoscale 

meshfree particle method. The error in displacement is defined as 

 2

2

MM PM

MM
Error

−
=

u u

u
 (4.24) 

where MMu  and PMu  are the atomic displacements from the molecular mechanics 

calculation and the meshfree particle method, respectively. Note, here, that one can 

calculate the atomic displacements from the particle displacements in the meshfree 

particle method based on the meshfree particle approximation. The convergence rate is 

1.28 here which is shown in Fig. 4.14. 
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   (a) meshfree particle method                        (b) molecular mechanics 

 Figure 4.12: Deformed configurations and stress distribution of the nanobeam 
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 Figure 4.13: Evolutions of the nanobeam potential 

 

  

 Figure 4.14: Convergence of the nanoscale meshfree particle method 
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4.3.2.2 Vibration of a Nanobeam 

The vibration of a nano cantilever beam is studied in this example. The nanobeam 

is similar to what we study in the previous examples, but with 200nmL =  and 

34.6nmH = . There are 8221 atoms in this nanobeam. One end of the beam is fixed. We 

use the LJ (6-12) potential function to approximate the interaction between nearest atoms. 

The constants are chosen as follows: 1.833nmσ =  and 98.25 10 Jε −= × . The mass of 

each atom is 175.0 10 kg−× . In this example, the nanobeam is bent first with the loading of 

a prescribed displacement at the upper right corner. This step can be achieved similarly 

with the technique we used in the previous example. Then, if the nanobeam is released, it 

will vibrate up and down. Different numbers of particles are used in the simulations. The 

calculated oscillatory amplitude and frequency of the middle point on the right boundary 

are compared with the molecular dynamics simulation results as shown in Tab. 4.1, as 

well as computer time, when two vibration circles are finished. We can see that molecular 

dynamics simulations are obviously computationally intensive and the continuum 

mechanics (meshfree particle methods here) can save a great amount of computing time. 

Furthermore, the meshfree particle methods can give very accurate values of the 

oscillatory amplitudes compared with molecular dynamics, but not the frequencies 

although they are still compared well. We think that this result is due to the vibration of 

atoms around their equilibrium positions. Such molecular-level phenomena results in one 

of the macroscopic properties, temperature.  
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 Table 4.1: Amplitudes and frequencies of nanobeam vibration 

 

4.3.3 A Nanoplate with a Central Crack 

4.3.3.1 Stress Distribution 

Meshfree particle methods have advantages to treat fracture problems. In this 

example, we use the meshfree particle method to study the stress concentration of a 

nanoplate containing an initial central crack. The crack is initialized by taking a number 

of bonds out in the molecular model. The meshfree particle model with 400 particles is 

shown in Fig. 4.15. The dimensions are: 270nmL =  and 280nmH = , and the crack 

length is 135nm . This nanoplate contains 86915 atoms with the triangular molecular 

structure. The LJ (6-12) potential function is used in this example as the previous one. 

We use the visibility criterion [30] in the meshfree particle model to construct the kernel 

functions for the particles near the crack or around the crack tip. 

We plan to observe the stress concentration around the crack tip. The constitutive 

relationship can be achieved through the CB rule as before. For the purpose of 

 Amplitude 
(nm) 

Frequency 
(1/ns) 

CPU time  
(s) 

Molecular dynamics  
(8221 atoms) 3.90 2.067 425.25 

Meshfree particle method  
(2000 Particles) 3.91 2.159 52.46 

Meshfree particle method  
(320 Particles) 3.93 2.272 11.53 

Meshfree particle method  
(80 Particles) 3.94 2.324 2.31 
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comparison, we also perform molecular mechanics calculations to obtain the contour of 

stress distribution. At the atomic level, the Cauchy stress can be calculated as Eq. (D.1). 

 

  

 Figure 4.15: A nanoplate with a central crack modeled by the meshfree particle method 

 

Fig. 4.16 shows the comparison of the stress ( yyσ ) contour from the molecular 

mechanics calculation and the meshfree particle simulation. In the molecular mechanics 

calculation, the whole domain is divided into a number of subdomains, for each of which 

the Cauchy stress can be computed via Eq. (D.1). We can see that the result of meshfree 

particle method is in accord with that of the molecular mechanics calculation.  
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 (a) molecular mechanics                      (b) meshfree particle method  

 Figure 4.16: Stress concentration in a nanoplate with a central crack 

 

4.3.3.2 Crack Propagation in a Nanoplate for Different Temperature 

One of the benefits from the nanoscale meshfree particle method is that it is 

possible to investigate crack propagation mechanism at the nanoscale using continuum 

mechanics. With the implementation of the TCB rule, the temperature effects can be 

investigated. In this example, crack propagation in a nanoplate with the hexagonal-

triangular lattice, shown in Fig. 4.17, is studied. We first consider the nanoplate 

consisting of 256961 atoms with the following dimensions: the length of 800nm  and the 

width of 280nm . Each atom has the mass of 221.0 10 kg−× . An edge crack is initiated in 

the middle of the plate by taking out a number of bonds, and the initial crack length 

is 20nm . For simplification, the crack is restricted to propagate along the weak interface 

by assuming that only weakened bonds can be broken. We employ a quadratic potential 
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function to describe interatomic interactions between nearest neighbouring atoms, except 

weakened bonds. The quadratic potential function is 

 ( ) ( )2
0

1
2

l k l lϕ = −  (4.25) 

where the length of undeformed bond is 0 1.0nml = , and the spring constant is 

594.0N/mk = . A L-J (6-12) potential with a cutoff distance of 2.0nm , as described in 

Eq. (3.16), is used for weakened bonds. It should be noted here that the tangential 

stiffness of the weakened bond is equal to the spring constant, k , so that the parameters 

of the Lennard-Jones potential are: 188.25 10 Jε −= × . 

 

  

 Figure 4.17: A nanoplate with the hexagonal-triangular lattice containing an initial crack 
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In the meshfree particle model, there are 13600 particles. In this example, the 

nodal integration scheme is used so that particles are quadrature points. Based on the 

assumption of the TCB rule, the free energy per length along the cohesive zone is  

 ( ) ( )
lnH B

B

l
F l T

T
ϕ

ϕ κ
κ

⎛ ⎞′′
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

h
 (4.26) 

The cohesive traction, τ , is calculated as  

 ( ) ( )
( )2

B lTl
l

ϕκτ ϕ
ϕ
′′′

′= +
′′

 (4.27) 

 

  

Figure 4.18: The relation of cohesive traction and crack opening along the weak interface 

 

Fig. 4.18 shows the relation of the cohesive traction and the crack opening along 

the weak interface. We can see that the traction-opening slope gets lower, i.e. the crack 

can propagate easier, at a higher temperature. On the other hand, the triangular lattice 
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with the harmonic bonded potential function exhibits a special characteristic in which the 

Young’s modulus is higher at a higher temperature. The moduli are 20GPa, 25GPa, and 

36GPa at temperatures of 100K, 300K, and 1000K, respectively. The similar Young’s 

moduli are obtained when performing molecular dynamics simulations at those three 

temperatures. Consequently, the Rayleigh speed is higher at a higher temperature. 

In this example, we investigate temperature effects on the speed of crack 

propagation. The nanoplate is loaded in mode I via prescribed displacements with the 

train rate of 81 10−×  per fs. Three various temperatures, 100K, 300K and 1000K, are 

considered. The evolutions of crack speeds are illustrated in Fig. 4.19. 

It can be seen that cracks start to propagate around 0.3ns and crack speeds 

become constants within 0.1ns. The terminal constant crack speeds are 600m/s, 1100m/s 

and 1350m/s at 100K, 300K and 1000K, respectively. Obviously, high temperature 

results in high crack propagation speed. It should be noted that all the calculated crack 

speeds are lower than the Rayleigh wave speed, ~1450m/s. We also consider higher 

temperatures, such as 2000K. The crack speed does not increase significantly and is still 

lower than the Rayleigh wave speed. In this example, our simulations demonstrate that 

the temperature has significant effects on the crack propagation speed when it is lower 

than 1000K. Otherwise, the temperature effects are not significant. As a comparison, we 

also perform molecular dynamics simulations, and the Berendsen thermostat is used to 

maintain the nanoplate at a given temperature. Fig. 4.19 also shows that the same 

phenomenon can be observed when performing molecular dynamics simulations.  
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 Figure 4.19: Comparison of crack propagation speed at different temperatures 

  

4.3.3.3 Crack Propagation in a Nanoplate with a Temperature Field 

Although a globally constant temperature was assumed in the above simulations, 

the continuum approximations with the TCB rule can deal with the object in a 

temperature field. Since it is assumed that atoms have the same harmonic vibration mode 

locally in the TCB rule, the free energy can be evaluated at the discretized particles with 

a locally constant temperature in the continuum approximations. Here, we investigate 

crack propagation in a large nanoplate with the length of 1600nm and the width of 280nm. 

The nanoplate is subject to a linear temperature field from 100K to 1000K along its 

longitudinal direction. Consequently, the crack will propagate from a low temperature 

region to a high temperature region and the crack speed will be increased as illustrated in 

Fig. 4.20.   
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 Figure 4.20: Crack propagation speed in linear temperature field 

 

4.3.4 Nanoindentation 

Nanoindentation is similar to conventional hardness testing performed on the 

nanoscale.  The force required to press a diamond indenter into a material is measured as 

a function of indentation depth. Force-depth curves obtained during indenting indicate 

material properties, such as elastic modulus and hardness. In this example, a nanoscale 

indenter with the radius of 100nm is pressed into a crystalline with the simple cubic 

lattice. Lennard-Jones potential, as described in Eq. (3.16) with 0 1nml =  and 

188.25 10 Jε −= × , is employed for describing interaction between nearest atoms in the 

lattice. The mass of each atom is 221.0 10 kg−× . The crystalline has the dimensions of 

500nm 500nm 250nm× ×  and contains 65 millions atoms. Therefore, the simulation of 
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nanoindentation is especially appealing for nanoscale continuum approximation since the 

experimental systems remain larger than the biggest model that can be handled by 

molecular dynamics. Within the nanoscale meshfree particle model, 8125 particles are 

used to simulation this nanoindentation problem. The indenter is assumed to be rigid in 

this example and the deformed configuration of the nanoscale crystalline material is 

shown in Fig. 4.21. 

 

  

 Figure 4.21: Simulation of nanoindentation using meshfree particle methods 
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 Figure 4.22: Force-depth relations at various temperatures 

 

Fig. 4.22 illustrates the force-depth relations at various temperatures. It can be 

seen that higher temperature results in lower force loaded on the indenter to reach the 

same depth. Here we assume that no dislocation occurs so that there are no kinks 

appearing on the force-depth curves as demonstrated in molecular or multiscale 

simulations [21]. Once the material instability criterion is setup, we will be able to 

investigate nucleation of dislocations.  

In addition, we investigate the temperature effects on the force loaded on 

indenters for different materials. We choose different energy depths, ε , in Lennard-Jones 

potential function so that the corresponding material stiffness are different. To reach the 

depth of 1nm, the force applied on the indenter decreases when temperature increases. 

Fig. 4.23 shows that the change of force is larger if the material stiffness is smaller. We 

conclude that temperature effects are more significant on material with smaller stiffness.  
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 Figure 4.23: Temperature effects on the force loaded on indenters for different materials 

when the depth is 1nm  

 

4.4 Summary and Conclusions 

A nanoscale meshfree particle method with the implementation of the 

temperature-related Cauchy-Born rule has been proposed. The intrinsic properties of the 

material associated with each particle could be sought from the atomic level via the TCB 

rule. Several numerical examples showed that numerical simulations in nanotechnology 

can be beneficial from the advantages of the meshfree particle methods. This progress 

could not only save a great amount of computer time but also make it possible to treat 

extremely large deformation problems and the problems involving discontinuities at 

nanoscale. Through this hierarchical multiscale method, the nanoscale crack propagation 
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problem is investigated using visibility criterion and cohesive model.  The observed crack 

propagation phenomena at finite temperatures match the ones in molecular dynamics 

simulations.  It is shown that the temperature effects are significant on the crack 

propagation speed when the temperature is in a particular range. 
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CHAPTER 5  

TEMPERATUR-DEPENDENT MATERIAL STABILITY 

5.1 Introduction 

5.1.1 Material Stability 

In solid mechanics, both the physical model and numerical discretization affect 

the reflection of the material properties. But only the material model used in the 

computational calculation describes the intrinsic properties of the material. The 

phenomena such as shear bands and fracture are the important symptoms of material 

stability and are of interest for the researchers in the field of computational mechanics or 

materials science. The stability of the material model is an important issue because the 

material model and numerical methods that are intended for failure simulation need to 

reproduce the onset of material instabilities with reasonable fidelity.  

Material instabilities occur in nonassociative plasticity and softening materials 

where stress decreases with increasing strain. In the early work of Hadamard [60], he 

examined the question of what happens when the tangent modulus is negative, and 

identified the conditions for a vanishing propagation speed of an acceleration wave as a 

material instability. Hill [61] considered an infinite body of the material in a 

homogeneous state of stress and deformation. He then applied a small perturbation to the 

body and obtained an expression for its response. If the perturbation grows, the material 

is considered unstable; otherwise it is stable. 

Ogden [62] showed that material instability in equilibrium problems is associated 

with loss of ellipticity of the incremental equations of equilibrium. Loss of ellipticity will 

always occur when the tangent modulus loses positive definiteness. But it is also possible 
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to lose ellipticity condition when the tangent modulus is positive definite. In the dynamic 

equations, tangent moduli that violate ellipticity conditions lead to loss of hyperbolicity, 

so that three real positive wave speeds no longer occur in every direction. This is also 

indicative of a material instability. 

Xiao and Belytschko [35] have given material stability analysis of meshfree 

particle methods in a two-dimensional problem. They pointed out that Eulerian kernels in 

meshfree particle methods severely distorted the material instability while Lagrangian 

kernels can exactly reproduce material instability.  

The literatures on material stability analysis had given us an extensive view of the 

material model, but their limitation is that the former researchers didn’t consider the 

temperature effects on the material stability, which is very important issue in material 

modeling especially for nanostructured materials. In this chapter, we will investigate 

stability of nanostructured material at finite temperatures. Some examples will illustrate 

that the temperature effects on nanostructured material stability are significant. 

5.1.2 Stability of Crystalline Solids 

Most nanostructured materials show their crystal properties. Therefore, the 

stability of crystalline solids is a very important issue for the novel engineering 

applications. An ordered crystalline solid consists of a periodic arrangement of atoms that 

has translational symmetry of the crystal at a distance comparable to the atomic 

separation. This structure can mathematically be described as a lattice, and the particular 

arrangement of atoms within the lattice gives rise to various point and space group 

symmetries that can have a profound effect on the microscopic and macroscopic 

properties of the material [63, 64, 65]. Under the assumptions of Cauchy-Born rule, the 
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deformations of the lattice can be expressed in terms of macroscopic deformation 

gradient F  of the lattice vectors. If the microstructure is not centrosymmetric, which 

means the multilattice contains several sublattices that could deform independently, inner 

displacement (internal shift) vectors should also be considered in the deformation 

description. The interaction between atoms in a multilattice can be described by the 

atomic interaction potentials. These include relatively simple pair-potentials and long 

range interactions. 

The stability theory of crystalline solids using multilattice kinematics has been 

discussed in Elliott’s paper [66, 67]. The three different stability criteria are briefly 

outlined below. 

1. Homogenized Continuum (HC) stability 

The HC-stability criterion indicates stability with respect to all internally 

equilibrated “uniform” perturbations at the continuum scale. A “homogenized 

continuum” energy density is defined as a function only of the deformation gradient by 

eliminating the inner displacements η  using strain energy minimization Eq. (3.32). 

 ( ) ( )ˆ ,w w≡F F η  (5.1) 

The crystal’s equilibrium configuration 
0
F  is considered HC-stable if the resulting elastic 

moduli are positive definite with respect to all deformation gradient, i.e., w%  is a local 

minimum at the equilibrium configuration. 

 
0

2
T T T

T T

ˆ
0, 0wδ δ δ∂

> ∀ ≠
∂ ∂ F

F : : F F
F F

 (5.2) 

It is as same as  

 0 0 00 0, 0⊗ ⊗ > ∀ ≠ ≠n h : C : n h n h  (5.3) 
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where C  is the first elasticity tensor, 0n  and h  are two arbitrary non-zero vectors. HC-

stability criterion is identical to strong ellipticity condition and hyperbolicity condition 

for the time-dependent PDE. 

2. Cauchy-Born (CB) Stability 

CB-stability provides an intermediate criterion by considering perturbations at 

both the atomistic and continuum scales. It indicates stability with respect to all “quasi-

uniform” perturbations and contains HC-stability as a special case. Here, both the 

uniform deformation gradient F  and the inner displacements η  are allowed to vary 

independently. The crystal is considered CB-stable if ( ),w F η  is a local minimum, or 

 

0 0

2 2

T T T T
T T

2 2

T
,

, 0 0, 0

w w

w w
δ

δ δ δ δ
δ

⎡ ⎤∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ⎡ ⎤⎢ ⎥⎡ ⎤ > ∀ ≠ ≠⎢ ⎥⎣ ⎦ ⎢ ⎥∂ ∂ ⎣ ⎦⎢ ⎥
∂ ∂ ∂ ∂⎣ ⎦F η

F F F η F
F η F η

η
F η η η

 (5.4) 

The CB-stability criterion bridges the length scales between the phonon- and HC-stability 

criteria by accounting for the atomic scale inner displacements and a superset of the 

continuum scale uniform perturbations. But the CB-stability is identical to HC-stability 

for simple lattices, since there is no inner displacement. 

3. Phonon Stability 

The phonon-stability is defined in terms of the normal modes of vibration 

(phonons) for the crystal. It considers the largest set of perturbations and indicates 

stability with respect to bounded perturbations of all wavelengths at the atomic scale. The 

phonon-stability is not complete, “uniform” perturbations and the more general “quasi-

uniform” perturbations are addressed by CB-stability. In the phonon-stability, all atoms 

in the crystal are given their three translational degrees of freedom and the linearized 
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equations of motion are considered. It requires that the natural frequency for each phonon 

be a real quantity, or equivalently, that the eigenvalues of the crystal’s stiffness matrix 

with respect to all atomic degrees of freedom be positive definite.  

From the local harmonic model, the principal frequencies of atom I  can be 

calculated by diagonalizing the local dynamical matrix whose determinant is expressed as 

 
2n

I Ik
k

D ω⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∏  (5.5)  

The phonon-stability implies that the eigenvalues of the dynamical matrix are real. So, 

the dynamical matrix must be positive definite to make the lattice phonon-stable since it 

is always symmetric. 

Each of the three stability criteria considered interrogates a different set of 

perturbations and no single set encompasses the other two; however, some overlap exists. 

The phonon-stability considers bounded perturbations of all wavelengths and no 

macroscopic deformation of the crystal exits, since T 0δ =F . The CB-stability considers 

all quasi-uniform perturbations in the continuum level that have nonzero TδF  and 

independent δη  perturbations. The CB-stability could be reduced to the HC-stability 

based on the inner relaxation. Physically this may be reasonable, since one can imagine 

that the characteristic time scale for the internal variable’s dynamic evolution to be much 

shorter that the rate of evolution for the uniform deformation gradient F . Actually, the 

CB- and HC-stability are identical in case of simple lattices, where there is no inner 

displacement involved. We will use HC-stability criterion to analyze nanostructured 

materials at finite temperature, since this stability criterion is based on homogenized 

continuum energy density and could be used as a material failure indicator in a 
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continuum level. Also, it has been shown that for hard-device loading (which imposes 

displacement conditions on the entire boundary of the body), classical continuum 

mechanics indicates that HC-stability condition is necessary and sufficient for stability 

[66], and this criterion reflects the stability property merely from material itself. 

5.2 Temperature-dependent Material Stability Analysis 

In this chapter, we perform a von Neumann stability analysis [61, 68, 69] of 

nanostructured materials via a homogenization technique. As a difference from HC-

stability mentioned in the above, we employ the temperature-related CB rule because we 

believe temperature effects on nanoscale material instability are significant. We first 

derive the linearized equations. Perturbations in the displacement are assumed as follows, 

 = +u u u%  (5.6) 

where the superposed ~ denotes a perturbation. The perturbed solutions are governed by 

the following equation: 

 0ρ = ∇ ⋅Xu P&& %%  (5.7) 

where 0ρ  is the initial density, P%  is the perturbation of the nominal stress and ∇X  is the 

gradient with respect to the material (reference) coordinates. From the TCB rule, Eq. 

(3.14), the perturbation of the nominal stress is 

 ( ) ( )
2

T T
T T

,
,Hw T
T

∂
= ⋅ = ⋅

∂ ∂
F

P F C F F
F F

% % %  (5.8) 

where ( ),TC F  is the temperature-related first elasticity tensor, or first tangential 

stiffness [33]. Writing Eq. (5.8) in indicial form, the perturbed stress is given by 

 ij ijkl lk ijkl lkP C F A F= =% % %  (5.9) 
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The governing equation in terms of the perturbed displacements can be obtained by 

substituting Eq. (5.9) into Eq. (5.7) 

 ( ) ( ) ( )
2

0 2 , , ,i l
ijkl lk ijkl

j j k

u ut C t F t C
t X X X

ρ
⎛ ⎞∂ ∂∂ ∂⎡ ⎤= = ⎜ ⎟⎣ ⎦∂ ∂ ∂ ∂⎝ ⎠

X X X
% %%  (5.10) 

Assuming that the perturbation of displacements is in the form of a plane wave  

 ( )0 ,i tt ie eαω κ+ ⋅= = Xn Xu g g%  (5.11) 

where, g  is polarization of the wave, κ  is wave number, ω  is frequency and 0n  is the 

normal direction of the wave front with respect to the initial configuration [90]. Then 

 ( ),0i tl
lk l k

k

uF g n e
X

ακ∂
= =
∂

X%%  (5.12) 

and 

 ( ) ( ) ( ), ,0 0 2 0 0i i t t
ijkl lk ijkl l k j ijkl k j l

j

C F C g n n e C n n g e
X

α ακ κ κ∂
= = −

∂
X X%  (5.13) 

Since 

 ( )
2

,2
2

ti
i

u g e
t

αω∂
= −

∂
X%

 (5.14) 

The perturbed equation Eq. (5.10) yields 

 2 2 0 0
0 0i ijkl k j lg C n n gρ ω κ− + =     for    1 toi N=  (5.15) 

or  

 
2

0
2

0

1 0il il lgω δ
κ ρ

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
A ,    0 0 0

il ijkl j kC n n=A  (5.16) 

( )0 0nA  is called the acoustic tensor. The above is a set of homogeneous linear algebraic 

equations. Nontrivial solutions exist only when the determinant vanishes. Thus, the 

characteristic equation for the continuum medium is  
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2

0
2

0

1det 0il il
ω δ
κ ρ
⎡ ⎤

− =⎢ ⎥
⎣ ⎦

A  (5.17) 

If the matrix 0A  is positive definite, then the roots ω  must be real and the 

nanostructured material is stable. Note that instabilities can occur when 0A  loses 

positive definiteness, which can occur due to strain-softening. 

5.3 Applications 

5.3.1 One-dimensional Stability Analysis 

We first conduct one-dimensional stability analysis. The perturbation of 

displacement takes the form of a plane wave in the X -direction as: 

 i ix tu ge κ ω+=%  (5.18) 

The governing equations in one dimension are 

 0 0
Pu b
X

ρ ρ∂
= +
∂

&&  (5.19) 

and 

 HwP
F

∂
=

∂
 (5.20) 

The equations for the perturbed solutions corresponding to Eq. (5.7) – Eq. (5.9) are 

 0
Pu
X

ρ ∂
=
∂

%
&&%  (5.21) 

 
2

2
HwP F CF

F
∂

= =
∂

% % %  (5.22) 

where u%  is the perturbed displacement in the x -direction, P%  is the perturbation of the 

nominal stress, F  and F% are the deformation gradient and its perturbation respectively.  
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In this section we consider a one-dimensional molecule chain as shown in Fig. 3.1. 

We assume that the molecule chain contains N  atoms and the mass for each atom is 0m . 

The bond length in equilibrium state and bond potential between any of the two nearest 

neighboring atoms are 0l  and ( )lϕ  respectively. Periodic boundary conditions are 

employed. 

The unit cell of this molecule chain contains one atom and two half-bonds. The 

free energy density for this unit cell under temperature T  can be calculated as 

 

( )

( ) ( ) ( )

0

0
0

1 ln

1 1 1ln ln ln
2 2

H B
B

B
B

Dw l T
l T

l T m
l T

ϕ κ
κ

ϕ κ ϕ
κ

⎧ ⎫⎡ ⎤⎪ ⎪= + ⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪′′= + + −⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

h

h
 (5.23) 

where D  is the determinant of the dynamical matrix which can be written as 

 
2 2

2 2
0 0 0

1 1D
m x m l m

ϕ ϕ ϕ′′∂ ∂
= = =

∂ ∂
 (5.24) 

The nominal stress derived from the free energy density can be calculated as 

 ( ) ( )

( ) ( )
( )

0
0

1 1   ln
2

1   
2

H H

B

B

w w lP
F l F

l T l
l l

l
l T

l

ϕ κ ϕ

ϕ
ϕ κ

ϕ

∂ ∂ ∂
= =

∂ ∂ ∂
⎧ ∂ ⎫⎡ ⎤′ ′′= +⎨ ⎬⎢ ⎥∂ ⎣ ⎦⎩ ⎭

′′′
′= +

′′

 (5.25) 

And then, the temperature-related first tangential stiffness is  
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 ( ) ( )
( )

( )
( ) ( )
( )

( )
( )
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P P lC
F l F
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l l

l lT Tl l
l l

ϕ
ϕ κ

ϕ

ϕ ϕκ κϕ
ϕ ϕ
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= =
∂ ∂ ∂

⎡ ⎤′′′∂ ′= +⎢ ⎥′′∂ ⎣ ⎦
⎧ ⎫⎡ ⎤′′′⎪ ⎪′′= + −⎨ ⎬⎢ ⎥′′ ′′⎣ ⎦⎪ ⎪⎩ ⎭

 (5.26) 

The linearized equation in terms of the perturbed displacement can be written as 

 
2 2

0 2 2

u u uC C
t X X X

ρ ∂ ∂ ∂ ∂⎛ ⎞= =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

% % %
 (5.27) 

Substituting the Fourier representation of the perturbed solution, Eq. (5.18) into Eq. (5.27) 

yields that the stability is governed by 

 
2

2

0

Cκω
ρ

=  (5.28) 

It can be seen that the solution becomes unstable only when 0C < . The criterion 

for material stability of the molecule chain is 

 ( )
( ) ( )
( )

( )
( )

24

0
2 2
B BF FT TF

F F
ϕ ϕκ κϕ
ϕ ϕ

⎡ ⎤′′′
′′ + − ≥⎢ ⎥′′ ′′⎣ ⎦

 (5.29) 

Fig. 5.1 shows the stable domain of the molecule chain based on the HC-stability 

criterion, Eq. (5.29). Lennard-Jones 6-12 potential was used in this example to describe 

the atomistic interaction with the parameter 178.25 10 Jε −= × . Various deformation 

gradients and temperatures up to 3000K are considered. It can be seen that the stable 

domain gets smaller with increasing temperature. It should be noted that the locally 

harmonic mode for atom vibration might be invalid at higher temperatures that are close 

to the material melting temperature. In addition, molecular dynamics is conducted at 

selected deformation gradients and temperatures to verify the continuum-approached 
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material stability analysis. In molecular dynamics, the molecule chain contains 200 atoms. 

Instability occurs when the length of one bond is larger than the cutoff distance of the 

Lennard-Jones potential function. In other words, the molecule chain is broken. In Figure 

5.1, empty circles represent the stable molecule chains, while the solid circles represent 

the unstable molecule chains. As evidenced, the molecular dynamics results support the 

linearized stability analysis. 

 

  

 Figure 5.1: Stable domain of 1-D molecule chain 
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 Figure 5.2: Temperature-dependent stability analysis for 1-D molecule chain 

 

In Fig. 5.2, the lines represent the boundaries of the stable domain for different 

material parameters. One the left side of each line is the stable domain for each case. We 

can see if we do not consider the temperature effect, which means there is only the first 

term in Eq. (5.29), the boundary of stable domain is a temperature independent straight 

line. As the material parameter goes smaller, the stable domain is getting smaller, which 

makes sense since the softer material is easier to lose its stability at high temperature. 

5.3.2 Two-dimensional Stability Analysis 

Then we consider a two-dimensional problem to investigate material stability in 

higher dimensions. From Eq. (5.8) the perturbation of the nominal stress P  can be 
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computed via the temperature-related first elasticity tensor C . In higher dimension, it can 

be written as 

 
2 2

T T T T 2 T T2 2
C B Bw T TD D D

D D
κ κ∂ ∂ ∂ ∂

= + − ⊗
∂ ∂ ∂ ∂ ∂ ∂

C
F F F F F F

 (5.30) 

or 

 
2 2

22 2
C B B

ijkl
ji lk ji lk ji lk

w T TD D DC
F F D F F D F F

κ κ∂ ∂ ∂ ∂
= + − ⊗
∂ ∂ ∂ ∂ ∂ ∂

 (5.31) 

in indicial form. The summation on the RHS is over all the bonds in a unit cell, and D  is 

the determinant of the dynamical matrix. Cw  is the strain energy density at 0K. If the 

strain energy density in a nanostructured material can be written as a summation of the 

bond potentials, 

 ( )C k
k

w lϕ=∑  (5.32) 

then the first term on the RHS of Eq. (5.30) and Eq. (5.31) can be calculated as 

 ( ) ( )
2 2

T T T T T T
C k k k

k k
k

w l l ll lϕ ϕ
⎡ ⎤∂ ∂ ∂ ∂′′ ′= ⊗ +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

∑F F F F F F
 (5.33) 

or 

 ( ) ( )
2 2

C k k k
k k

kji lk ji lk ji lk

w l l ll l
F F F F F F

ϕ ϕ
⎡ ⎤∂ ∂ ∂ ∂′′ ′= ⊗ +⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∑  (5.34) 

in indicial form. We ignore the off-diagonal components in dynamical matrix since they 

are pretty small compare to the diagonal components. Therefore, in a two-dimensional 

lattice the determinant of a dynamical matrix is 

 11 22D D D=  (5.35) 

and 
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 11 22
22 11T T T

D DD D D∂ ∂∂
= +

∂ ∂ ∂F F F
 (5.36) 

The first derivative of the diagonal components with respect to the deformation gradient, 

from Eq. (3.28), is 
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 (5.37) 

And 

  
2 22
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22 11T T T T T T T T2D D D DD D D∂ ∂ ∂ ∂∂

= + ⊗ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂F F F F F F F F

 (5.38) 

The second derivative of the diagonal components with respect to the deformation 

gradient is 
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(5.39) 

Followed the discussion for temperature-dependent material stability, a simple 

sufficient condition for stability can be deduced when the acoustic tensor 0A  is 

symmetric: the positive definiteness of the acoustic tensor for all 0n  is sufficient for 
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stability. The acoustic tensor 0A  is symmetric when C  has major symmetry. This is 

guaranteed by Eq. (5.30). 

The positive definiteness of 0A  for all 0n  can also be expressed as 

 0 0 00 0, 0ijkl j k i lC n n h h > ∀ ≠ ≠n h  (5.40) 

or 

 0 0 0⊗ ⊗ >n h : C : n h  (5.41) 

where 

 0 0
1 2cos sinn nα α= =  

 1 2cos sinh hβ β= =  

and α  and β  are arbitrary angles. This is called the strong ellipticity condition or the 

hyperbolicity conditions for the time dependent PDE. When the strong ellipticity holds, 

the PDE for equilibrium is elliptic, the roots ω  will be real and the continuum is stable.  

  

 Figure 5.3: Quadrilateral molecular structure with its unit cell 
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In the numerical example, we only consider two-dimensional bi-axial tension 

problem for simplicity. The deformation gradient is in the form 

 1

2

0
0
λ

λ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

F  (5.42) 

where 1λ  and 2λ  are the stretching in the x  and y  direction, respectively.  

We consider a quadrilateral lattice, which is shown in Fig. 5.3, with Lennard-

Jones material whose 188.25 10 Jε −= ×  and 0 1nml = . In this lattice there are two 

independent bonds in the unit cell, 2k = , and  

 11 11 0r F l= , 12 21 0r F l= , 

 21 12 0r F l= , 22 22 0r F l= . 

If there exists Iω  such that ( ) 0Im <Iω  for any α , the nanostructured material 

will be unstable. The stable domain for the material considered above is shown in Fig. 5.4. 

The entire compressive domain ( )10 ≤< iλ  is stable. However, for sufficiently large 

extensional deformations, the material is unstable. It also can be seen that the stable 

domain is smaller at a higher temperature.  

To study temperature effects on nanostructured material instability, we employ 

various energy well depths, ε , in the Lennard-Jones potential function. Three values are 

considered: 18
0 8.25 10 Jε −= ×  for material 1, 00.1 ε×  for material 2, and 00.01 ε×  for 

material 3. Obviously, material 1 is ten times stiffer than material 2 that is ten times 

stiffer than material 3. At zero temperature, those three materials have the same material 

stability. However, at a room temperature of 300K, the stiffest material (material 1) has 

the largest stable domain, shown in Fig. 5.5. 
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 Figure 5.4: Stable domains at various temperatures 

  

 Figure 5.5: Stable domains of different materials at room temperature of 300K 
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5.3.3 Stability Analysis of the Graphene Sheet 

As a more practical example, we consider temperature effects on the material 

stability of a graphene sheet. A graphene sheet has a honeycomb multi-lattice, and the 

unit cell is shown in Fig. 5.6.  We have mentioned that the honeycomb multi-lattice is a 

Bravais multi-lattice, which has two types of basic nuclei shown as black and white dots 

in Fig. 5.6. Obviously, one basic nucleus and two simple Bravais lattice vectors cannot 

represent the entire lattice when the graphene sheet is subject to a homogeneous 

deformation. Therefore, the inner displacement, η , as a shift vector must be introduced to 

define the relative displacement between the two types of basic nuclei. Consequently, the 

strain energy density is a function of inner displacements and deformation gradients. 

Both the HC stability and the CB stability consider material stability when the 

crystal solid is subject to a continuum-level deformation gradient. The role of the inner 

displacement in analyzing material stability determines whether using the HC stability or 

the CB stability. If the inner displacement has insignificant effect on material stability, 

the HC stability should be employed. Indeed, the HC stability criterion indicates stability 

with respect to all internally equilibrated “uniform” perturbations at the macroscopic 

continuum scale. A “homogenized continuum” energy density is defined as a function 

only of the deformation gradient by eliminating the inner displacements using energy 

minimization. The CB stability provides an intermediate criterion by considering 

perturbations at both the atomistic and continuum scales. It indicates stability with 

respect to all “quasi-uniform” perturbations and includes HC stability as a special case. In 

the CB stability, both the uniform deformation gradient and the inner displacements are 

allowed to vary independently. In our research, we mainly consider the HC stability. 
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According to the HC stability, the crystal’s equilibrium configuration is considered stable 

if the resulting elastic moduli are positive definite with respect to all deformation 

gradients. The HC stability criterion is identical to the strong ellipticity condition and 

hyperbolicity condition for the time-dependent PDE.  

 

  

 Figure 5.6: Unit cell of graphene sheet 

  

We employ the modified Morse potential function [56] with the same parameters 

we used in the previous chapter to describe the interatomic interaction. Based on the TCB 

rule, the nominal stress is derived as 
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 (5.43) 

where 0A  is the area of the unit cell in reference configuration. We neglect the 

temperature effects on inner displacements since they are in the internal equilibrium. 

Similar to the work by Tadmor et al. [55], the inner displacement is calculated via the 
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minimization of the strain energy density with respect to η  for a given deformation of the 

lattice, i.e., 

 ( ) ( ) ( )
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,
,minarg =
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∂
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η η
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Then the nominal stress is 
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Since 
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the stress then further reduced to 
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And the first tangential stiffness tensor is 
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 (5.48) 

This indicator can be used to determine whether the material is stable or unstable 

under certain deformation and temperature. But we should notice that here the strain 

energy density Cw  and dynamical matrix D  are not only the function of bond stretching 

potential but also the angle bending potential. The derivatives of the strain energy density 
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and the determinant of the dynamical matrix with respect to the inner displacement can 

be derived similarly to the derivates with respect to the deformation gradient, which are 

shown in the previous chapter.  

During our analyses, we find that if the graphene sheet is subject to deformation 

on the direction of 1λ , shown in Fig. 5.6, the inner displacement plays a significant role in 

the stability of the graphene sheet. In this case, the CB criterion [66, 67] has to be applied. 

In our research, we only conduct stability analysis when the graphene sheet is subject to 

elongation on the direction of 2λ , i.e., 1 1λ = , because the effect of the inner displacement 

can be neglected. It should be noted that the 2λ  direction coincides to the axial direction 

of an armchair carbon nanotube. Since size effects of large armchair carbon nanotubes 

can be negligible [70], stability analysis performed here can assist in the prediction of 

failure strains of armchair nanotubes, as shown in Fig. 5.7. It can be seen that at the room 

temperature of 300 K, the failure strain is 13.5%. Taking the average secant Young’s 

modulus [70] of 800 GPa for carbon nanotubes, the failure stress of armchair tubes at 

room temperature is 108 GPa, which is in good agreement with molecular dynamics 

simulation, 110 GPa [71].  
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Figure 5.7: Failure strain of the graphene sheet along 2λ  direction for different 

temperatures 

 

5.4 Summary and Conclusions 

The general concept of material stability and several different stability criteria of 

crystalline solids have been introduced and compared. A standard linearized stability 

analysis process has been conducted for nanostructured materials using temperature-

dependent homogenization technique. It has been showed that the temperature-dependent 

intrinsic stability of a crystalline solid could be reflected by TCB rule. Stability analyses 

of a 1D molecule chain and 2D lattices verified that the stability states from TCB rule are 

the same as the ones from molecular dynamics simulation at given temperature. We also 



www.manaraa.com

 

 

106

found that stiffer materials can sustain larger deformations than softer materials at the 

same temperature. 
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CHAPTER 6  

THERMO-MECHANICAL COUPLING 

6.1 Introduction 

In numerical modeling and simulation, the temperature-related homogenization 

technique can help to evaluate stress at a local material point if the temperature profile is 

prescribed. However, material failure is always related to bond breaking at the nanoscale, 

in which the released energy results in temperature increase in the surrounding material 

during formation and propagation of cracks. Therefore, a thermo-mechanical model must 

be developed via coupling the energy equation with the momentum equations in the 

nanoscale continuum approximation. In this chapter, we couple the thermal diffusion 

equation in the nanoscale meshfree particle method [72, 73]. The temperature profile is 

updated via solving discrete equations of thermal flow. Since locally thermal dynamic 

equilibrium is assumed, the TCB rule is still valid for calculating stresses for solving 

equations of motion. If crack nucleates and propagates, the released energy due to bond 

breaking at the nanoscale will be used to calculate the temperature increment in the 

continuum approximation.  

6.2 Thermo-mechanical Coupling 

To develop a thermo-mechanical coupling model in nanoscale continuum 

simulations, the energy equation should be considered as well as the temperature-related 

homogenization techniques. When assuming Fourier’s law for heat conduction, the 

energy equation is  

 2
,ij i jcT v k T Sρ σ= + ∇ +&  (6.1) 
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where ρ  is the density, c  is the specific heat, T  is the temperature, σ  is the stress, v  is 

the velocity, and k  is the conductivity. If no internal heat source, S , exists and all 

deformations are reversible, the energy equation is rewritten as the macroscopic diffusion 

model for temperature profile.  

In our research, we mainly focus on nanoscale continuum simulation via the 

nanoscale meshfree particle method [72, 73] to demonstrate the application of the 

proposed thermo-mechanical coupling model. In a two-dimensional problem subject to 

the Lagrangian description, the governing equations include the thermal diffusion 

equation [74] and the momentum conservation equation.   
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where 0ρ  is the initial density, vc  is the specific heat capacity for constant volume, k  is 

the thermal conductivity, X  is the material (Lagrangian) coordinates, u  is the 

displacement, b  is the body force per unit mass, and the superposed dots denote material 

time derivatives. And P  is the nominal stress tensor which can be calculated by TCB rule, 

 ( ) ( )
T

,
, Hw T
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∂
=

∂
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P F
F

 (6.4) 

where Hw  is the free energy density,  and F  is the deformation gradient. The weak forms 

in the reference configurations, 0Ω , are written as follows via the Galerkin method:  
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where Tδ  and δu  are the test functions,  and t  is the prescribed boundary traction along 

the boundary, 0Γ . It should be noted that the boundary term in Eq. (6.6) vanished due to 

the essential boundary condition requirement. 

We employ the nanoscale meshfree particle method in this thesis to conduct 

nanoscale continuum simulations. In meshfree particle methods [40], the fields of 

temperature and displacements can be approximated as 

 ( ) ( ) ( ),h
I I

I
T t T tω=∑X X  (6.7) 

 ( ) ( ) ( ),h
I I

I
t tω=∑u X X u  (6.8) 

where ( )Iω X  are called Lagrangian kernels since they are functions of the material 

(Lagrangian) coordinates. The Lagrangian kernel functions can be obtained from the 

weight function, i.e., 

 ( ) ( ) ( )
( )

I
I I

K
K

W
W

ω ω
−

= − =
−∑

X X
X X X

X X
 (6.9) 

in which a quartic spline weight function is used: 
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where IR = −X X  and 0R  is the support radius of the influence domain. 

Substituting Eqs. (6.7) and (6.8) into the weak forms of Eqs. (6.5) and (6.6), the 

following discrete equations of thermal flow and motion can be obtained (Appendix E): 
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 I I IJ Jm T K T=&  (6.11) 

 ext int
I iI iI iIm u f f= −&&  (6.12) 

where 0
0I Im Vρ=  and 0

IV  is the volume associated with particle I , IJK  is the 

conductivity tensor as 
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and ext
iIf  and int

iIf  are the external and internal nodal forces,  respectively, given by 
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In the above integrals of Eqs. (6.13-6.15), we utilize the stress point integration 

scheme because the meshfree particle method with Lagrangian kernels and stress points 

is a stable numerical method [35, 40]. It should be noted that temperatures might vary at 

different particles within thermal flow. However, a locally thermodynamic equilibrium is 

assumed so that the TCB rule is still valid to calculate stresses. 

The flow chart of our simulation is as follows:  

1) Initialize the problem, including particle generation, boundary/initial 

condition definition, and material property identification.  

2) Solve the equations of thermal flow, Eq. (6.11), and update particle 

temperatures. 

3) Calculate stresses at the positions of particles via the TCB rule, i.e., Eq. (6.4). 

4) Solve the equations of motion, Eq. (6.12), and update particle displacements. 

5) Go to step (2) if the target time is not reached. 



www.manaraa.com

 

 

111

6) Output. 

6.3 Nanoscale Crack Propagation 

We restudy the problem of crack propagation in a nanoplate with triangular 

lattices in chapter 4, as shown in Fig. 4.17. But the temperature field is not prescribed in 

this case. We give only an initial temperature, which is the room temperature of 300K. 

Then, the temperature profile will be determined via solving Eq. (6.11) during the 

simulation. The simulated nanoplate consists of 513,922 atoms with the following 

dimensions: the length of 1600nm and the width of 280nm. Each atom has the mass of 

60amu. An edge crack is initiated in the middle of the plate by taking out a number of 

bonds, and the initial crack length is 20nm. The nanoplate is subject to fracture mode I 

via prescribed displacements with the strain rate of 81 10−×  per fs . In the meshfree 

particle model, there are 27,200 particles. The crack is modeled defining a line segment 

internal to the domain. The domains of influence for particles near the crack are truncated 

whenever they intersect the crack surface so that a particle on one side of the crack will 

not affect particles on the opposite side of the crack. This technique is called the visibility 

criterion by Krysl and Belytschko [11]. 

For simplification, the crack is restricted to propagate along the weak interface by 

assuming that only weakened bonds can be broken. A Lennard-Jones potential with 

2.47aJε = , 0 1nml = , and 2nmcutoffl = , is employed for weakened bonds. In the 

nanoplate except the weak interface, we use a harmonic potential function, 

( ) ( )2
0

1
2h l k l lϕ = − , to describe interatomic interactions between nearest neighbouring 

atoms. The spring constant in this harmonic potential function is 594.0nN/nmk = . Using 
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the TCB rule, the nominal stress, P , at a particle, where the deformation gradient is F  

and the temperature is T , is calculated as follows based on a unit cell model, 

 T T T T2
0 0

1
2 3

C CB Bw wT TD D
A D Dl

κ κ⎛ ⎞∂ ∂∂ ∂
= + = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

P
F F F F

 (6.16) 

It should be noted that both potential density, Cw , and the determinant of the dynamical 

matrix, D , could be calculated via the unit cell model.  

The thermal coefficients in equations of thermal flow, i.e., Eq. (6.11), are 

determined via molecular dynamics simulations on a piece of nanoplate (Appendix F). 

The specific heat capacity, vc , represents how the system internal energy responds to an 

isometric change in temperature. We conduct two isometric molecular dynamics 

simulations with periodic boundary conditions on the testing nanoplate at various 

temperatures. In each simulation, the internal energy is computed as the time-averaged 

potential energy. Consequently, the specific heat capacity can be computed as the change 

of internal energy per unit temperature. The thermal conductivity k  is the intensive 

property of a material that indicates its ability to conduct heat. It is defined as the quantity 

of heat, Q , transmitted in time t  through a thickness L , in a direction normal to a 

surface of area A , due to a temperature difference TΔ , under steady state conditions and 

when the heat transfer is dependent only on the temperature gradient. In our simulation, 

we set a high temperature on one side of the testing nanoplate and a low temperature on 

the opposite side via the Hoover thermostat [19]. The periodic boundary condition is 

applied on the other two sides. The heat will transfer from the side with high temperature 

to the side with low temperature due to the temperature gradient. The total internal 

energy in the center part of the specimen is measured as a function of time, so that we can 
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calculate the thermal conductivity. For the simulated nanoplate, the following thermal 

coefficients are obtained: -1 -10.141J kg Kvc = ⋅ ⋅   and -1 -10.76w m Kk = ⋅ ⋅ . 

The crack propagation criterion used in our study is similar to the cohesive zone 

model [58]. Two crack tips are monitored in the cohesive zone model: one is physical tip, 

a “real” crack tip in physics, and the other is mathematical tip, a fictitious tip ahead of the 

physical one. The mathematical tip is used to determine the domain of influence in 

meshfree particle methods via the visibility criterion. Between the mathematical tip and 

the physical tip in the continuum model, there is a so-called cohesive zone, where the 

cohesive traction is applied on the two facets of the cohesive zone. The cohesive tractions, 

τ , are taken as external forces in meshfree particle simulation and are derived via the 

TCB rule as 

 ( ) ( ) ( )
( )

ˆ , 1
2

H
B

w T
T
ϕ

ϕ κ
ϕ
′′′∂

′= = +
′′∂

Δ Δ
τ Δ

Δ Δ
 (6.17) 

where ϕ  is the Lennard-Jones potential describing the weak interface, Δ  is the crack 

opening displacement vector, and ( )ˆ ,Hw TΔ  is the free energy per unit length along the 

cohesive zone. In meshfree particle methods, the cohesive tractions can be projected into 

consistent nodal forces [58] without introducing additional degrees of freedom. 

At the nanoscale, crack initiation and propagation involve bond breakage. The 

released potential due to bond breaking turns out to be the kinetic energy. We know that 

the kinetic energy at the nanoscale relates to the temperature, which is a macroscopic 

parameter. Consequently, the temperature increases due to the released energy. Since a 

bond is treated as broken when its deformed bond length exceeds the cutoff distance, the 

released energy is calculated as the difference between the potential when the bond 
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length equals the cutoff distance cutoffl  and that when the bond length equals the 

equilibrium length 0l . In our simulation, the distance that the physical crack tip 

propagates determines the number of breaking bonds along the weak interface. 

Consequently, the temperature increment is thereafter calculated as follows: 

 1 total

B

T
N
ϕ

κ
Δ

Δ =  (6.18) 

where N  is the number of atoms associated with the broken bonds and totalϕΔ  is the total 

released energy. In nanoscale meshfree particle simulation, the increasing temperature is 

distributed on the particles around the physical crack tip based on the meshfree particle 

approximation. The temperatures on those particles will be treated as the discretized 

essential boundary conditions while solving the equations of thermal flow. 

We simulate the crack propagation in the nanoplate subject to fracture mode I. 

The initial temperature is set as the room temperature of 300K. The evolution of crack 

propagation speed is shown in Fig. 6.1. We can see that the crack starts to propagate at 

0.42ns. Once the crack propagates, some bonds along the weak interface are broken. The 

released energy results in a temperature increase in the surrounding domain around the 

crack tip. Furthermore, a temperature increase results in the reduction of cohesive traction 

in the cohesive zone along the weak interface. Consequently, the crack propagation speed 

increases gradually. Fig. 6.2 illustrates the temperature contour in the nanoplate at the 

time of 0.9ns. The temperature concentration occurs around the crack tip, and 

temperature propagates from the crack tip to the remaining domain of the nanoplate.  
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 Figure 6.1: Crack speed in a nanoplate with initial temperature of 300K 

  

 

 Figure 6.2: Temperature profile of crack propagation at 0.9ns  
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6.4 Summary and Conclusions 

A thermo-mechanical model has been developed via coupling the energy equation 

with the momentum equations in nanoscale continuum approximations. The temperature-

related constitutive relation is represented by TCB rule and the system temperature 

profile is updated via solving discrete equations of thermal flow. The nanoscale crack 

propagation is reanalyzed by the thermal-mechanical coupling method with the 

consideration of the temperature increasing around the crack tip due to the released 

potential. 
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CHAPTER 7  

NANOTUBE-BASED OSCILLATOR 

7.1 Introduction 

Since being discovered by Ijimma in 1990 [76], carbon nanotubes hold promise in 

designing novel nanoscale materials and devices due to carbon nanotubes’ unique 

mechanical and electronic properties [77, 78].  Carbon nanotubes have a high elastic 

modulus (~ 1TPa) [76], high strength (~100GPa), and low density so they can be used as 

ideal fibers in nanocomposites [79]. They can also be designed as scanning probe tips, 

field emission sources or used as other nanoelectronics components, such as molecular 

wires and diodes. As well, Bachtold and his co-workers [80] demonstrated logic circuits 

with field-effect transistors based on individual carbon nanotubes. Kinaret et al. [81] 

investigated the operational characteristics of a nanorelay in which a conducting carbon 

nanotube was placed on a terrace in a silicon substrate. Other carbon nanotube-based 

devices and machines include nanotweezers [82], nanogears [83], a nanocantilever device 

[84] and a nanotube motor [85].  

A multi-walled carbon nanotube (MWNT) consists of a number of co-axial 

single-walled nanotubes (SWNTs). Cumings and Zettl [86] realized the ultra-low friction 

between nanotube walls in nanoscale linear bearings and constant-force nanosprings 

when demonstrating the controlled and reversible telescopic extension of MWNTs. 

Consequently, MWNTs have been used to design novel nanoscale devices based on the 

relative motion of nanotube walls. Lozovik et al. [87] proposed to use double-walled 

nanotubes as nut and bolt pairs, and they found that the relative motion of nanotube walls 

was controlled by the potential relief of interlayer interaction energy.  A nanoswitch [88] 
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was designed with the assumption that the corrugation of interlayer energy has no 

significant effects on relative motion between nanotube walls. Nanotube-based oscillators 

have been of interest to scientists and engineers since Zheng et al. [89, 90] designed 

MWNTs as gigahertz oscillators in 2002. A simple nanotube-based oscillator consists of 

an inner tube (core) and an outer tube (shell).  When the outer tube is fixed, the inner tube 

can oscillate inside of the outer tube once it is given an initial velocity or an initial 

extrusion length. The oscillatory frequency may be up to 87GHz based on molecular 

dynamics simulations [91, 92].  Legoas and his co-workers [92] also pointed out that 

stable oscillators are only possible when the interlayer distances between the outer and 

inner tubes are of ~0.34nm, which equals the interlayer distance of regular MWNTs. 

Unlike other nanotube-based machines, energy dissipation plays a key role and needs to 

be considered when designing a stable nano-oscillator. Xiao et al. [8] studied 

mechanisms of oscillators at finite temperatures via molecular dynamics simulations. 

They found that oscillators would stop due to the interlayer friction. Tangney et al. [93] 

also studied mechanical energy dissipation in carbon nanotube-based oscillators and 

found that the interlayer friction strongly depends on the relative velocity of the tubes. In 

addition, the morphology combination of the tubes was found to have a significant effect 

on the interlayer friction [94, 95]. Since nanotube-based oscillators are expected to have 

potential applications, it is crucial to design stable nano-oscillators.  

Although molecular dynamics (MD) is a powerful tool in the domain of 

computational nanotechnology, as we discussed before, it exhibits severe limitations with 

respect to both length (restricted to 31.0μm volume) and time (restricted to a time step of 

1.0fs ) scales. MWNTs employed in experimental investigation have always been 
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composed of more than millions of atoms. Consequently, MD is not suitable to simulate 

large models for the purpose of analyzing manufacturing feasibility of nanotube-based 

mechanical systems. Currently, the development of efficient multiscale methods that are 

capable of addressing large length and time scales has been the subject of intensive 

research in computational nanotechnology for designing and analyzing novel nanoscale 

materials and devices. In this chapter, a continuum approach (a hierarchical multiscale 

method) will be developed to model and simulate nanotube-based oscillators because 

utilized nanotubes are not subject to large deformation during the oscillation,  

7.2 Modeling of Nanotube-based Oscillator 

7.2.1 Single-walled Nanotubes 

 

  

 Figure 7.1: Nanotube structure 

  

Most SWNTs have a diameter of close to several nanometers, with a tube length 

that can be many thousands of times longer. The structure of a SWNT (without cap) can 

be conceptualized by wrapping a one-atom-thick layer of graphite called graphene into a 
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seamless cylinder as shown in Fig. 7.1. The nanotube structure is uniquely determined by 

the chiral vector hC  which spans the circumference of the cylinder when the graphene 

layer is rolled up into a tube. The chiral vector can be written in the form as 

1 2h n m= +C a a , where 1a  and 2a  are the lattice vectors of the graphene. The pair of 

integers n  and m , written as (n, m), characterizes the nanotube structure [78, 96]. If 

0m = , the nanotubes are called "zigzag". If m n= , the nanotubes are called "armchair". 

Otherwise, they are called "chiral". 

7.2.2 Continuum Model of Single-walled Nanotube 

Since the carbon nanotube can be viewed as an appropriate roll-up of a planar 

graphene sheet, it is convenient to define the undeformed or reference system as the 

planar crystalline sheet in the continuum model of carbon nanotubes. The continuum 

object replacing the crystalline monolayer is a curvature surface without thickness. 

Therefore, the nuclei are assumed to lie on the surface, and the lattice vectors are chords 

of the surface. 

As discussed in previous chapters, the Cauchy-Born hypothesis consists of 

assuming that the lattice vectors deform as line elements within a homogeneous 

deformation, =a FA , where a  and A  are deformed and undeformed lattice vectors 

respectively. F  is the deformation gradient which maps “infinitesimal” tangential 

material vectors of the undeformed body into “infinitesimal” tangential material vectors 

of the deformed body. However, the lattice vectors a  and A , each of which connects 

two atomic positions, are physical entities with finite length. Consequently, Cauchy-Born 

rule holds exactly, at least locally, only when the “infinitesimal” material vector is 

equivalent to the lattice vector, which means the deformation is homogeneous. 
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Arroyo and Belytschko [27] introduced a so-called “exponential Cauchy-Born 

rule” (ECB rule) to overcome the difficulties of conventional Cauchy-Born rule in 

approximating curved membranes. The exponential mapping, which maps the lattice 

vector precisely from the reference to the current configurations, is approximated locally 

via the ECB rule based on the stretch and curvature of the membrane.  

In studying mechanisms of nanotube-based co-axial oscillators, we are mainly 

interested in the longitudinal motion of the carbon nanotube. We assume that the 

nanotube is deformed uniformly in the radial direction so that the out-of-plane motion 

can be neglected. Consequently, the Cauchy-Born rule is still appropriate as a 

homogenization technique in the continuum model of carbon nanotubes. In this case, the 

lattice vectors are approximated in the tangent plane at the material point. 

Since only the developable surface with zero Gaussian curvature can be mapped 

to a planar body, the cap of a nanotube, which is a semi sphere, can not be modeled via 

our continuum approach. However, the need to represent this kind of surface can be 

covered easily by splitting it into pieces that can be represented as approximately 

developable patches, and by gluing them together by continuity boundary conditions, 

which are easily accommodated by the Lagrange multiplier technique [97]. 

7.2.3 Meshfree Particle Approximation 

Since we ignore the out-of-plane motion of the nanotube, the atoms are only 

allowed to move on the surface of the nanotube. Consequently, each atom has only two 

degrees of freedom. It is natural to use the Cartesian components on the planar graphene 

in 2�  to express the atom coordinates in 3� . If we denote tx  and gx  as the Cartesian 
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components of the nanotube and graphene respectively, and R as the radius of the 

nanotube, the mapping can be written as 

 ( )
2 3

g t g

:

      

ϕ

ϕ

→

=x x x

� �

a
 (7.1) 

Or, 
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R
x x

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

=

 (7.2) 

In the meshfree particle method, we define 2
g ∈x �  as the current configuration 

and the undeformed planar graphene 2∈X � as the reference configuration. The 

deformation gradient is then defined by 

 g∂
=
∂

x
F

X
 (7.3) 

which is a 2 2×  matrix. Using the Cauchy-Born rule, the nominal stress in 2�  can be 

computed as 

 ( ) ( )
T

Cw∂
=

∂
F

P F
F

 (7.4) 

where Cw  is the strain energy density. Therefore the internal force in 2�  is then 

 
0

g 0
( )int I

iI ji
j

f P d
X

ω
Ω

∂
= Ω

∂∫
X  (7.5) 

where ( )Iω X is the meshfree kernel function. Then, we map the internal force onto the 

nanotube in 3� , where 
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 ( )g
int int

iI iIf fϕ=  (7.6) 

The equations of motion in 3�  then become 

 ext int
I iI iI iIm u f f= −&&  (7.7) 

where Im  and ext
iIf  are the mass and the external force of particle I , respectively.  

7.2.4 Non-bonded Interlayer Interaction 

In the nanotube-based oscillator, the external force applied on the inner nanotube 

is primarily due to the van der Waals [98] interlayer interaction. The van der Waals 

forces are induced due to non-bonded interatomic interactions. Although a SWNT or 

single layer of a MWNT can be modeled using the continuum approximation via the 

nanoscale meshfree particle method we developed before, the continuum approach to van 

der Waals interaction remains an issue. In the meshfree particle method-based continuum 

model, the key issue becomes how to map the van der Waals interaction between two 

groups of atoms to the interaction between two particles.  

The general form of the non-bonded potential of the atomistic system can be 

written as 

 ( ) ( )
,

1
2

i i

nb nb ij nb ij
i j i j B i j B

E V r V r
> ∉ ∉

= =∑ ∑ ∑∑  (7.8) 

where nbV  is the non-bonded potential, ijr  is the distance between atom i  and j , and iB  

is the set of atoms non-bonded interacting with atom i . In our study, the main non-

bonded interactions in the nanotube-based oscillator are between the atoms in the outer 

tube and the atoms in the inner tube. We neglect non-bonded interactions between the 
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atoms in the same tube. Therefore, the non-bonded energy in the nanotube-based 

oscillator system is 

 ( )
O I

nb nb ij
i A j A

E V r
∈ ∈

= ∑ ∑  (7.9) 

where OA  is the set of atoms in the outer tube and IA  is the set of atoms in the inner tube.  

The Lennard-Jones 6-12 potential has been adopted here to describe the van der Waals 

interaction, 

 ( )
6
0

12 6

1 1
2nb

yV r A
r r

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 (7.10) 

where 24 62.43 10 J nmA −= × ⋅ and 0 0.3834nmy =  [8, 99]. The interlayer equilibrium 

distance in a MWNT is 0.34nm , which results in the minimum van der Waals energy. 

This distance matches the thickness of a graphene sheet, and it also satisfies the criterion 

proposed by Legoas et al. [92] for stable nanotube-based oscillators. 

To calculate the non-bonded energy in the continuum level, we choose two 

representative cells of area 0S  each containing n  nuclei ( 2n =  for graphene). The 

continuum-level van der Waals energy density is 

 ( ) ( )
2

0
nb nb

nd V d
S

ϕ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (7.11) 

where d  is the distance between the centers of those two considered cells. Then, the total 

continuum-level non-bonded energy is calculated as 

 ( )d d
O I

nb nb O I O Iϕ
Ω Ω

Φ = − Ω Ω∫ ∫ x x  (7.12) 

where OΩ  and IΩ  are the deformed configuration of outer and inner tube respectively.  



www.manaraa.com

 

 

125

Eq. (7.12) can be integrated using the nodal or stress point integration schemes 

via the meshfree particle method. As a difference from the bonded interatomic 

interaction, the non-bonded interatomic interaction is determined by the van der Waals 

cut-off distance which limits the area associated to each particle in the continuum model.  

7.2.5 Reduced Model of Nanotube-based Oscillator 

Basically, the motion of the nanotube-based oscillator is composed of rigid body 

translation and deformation of the inner tube. However, since there is only longitude 

deformation induced on the inner tube (no bending and twisting) and the van der Waals 

interaction is significantly weaker than the bonded interatomic interaction, the rigid body 

translation of the inner tube is the dominant motion of the nanotube-based oscillator. 

Therefore, it is an alternative to reduce the computation model via only considering the 

rigid body motion of the inner tube and neglecting its deformation. Then the equation of 

motion is 

 extMu F=&&  (7.13) 

where M  is the total mass of the inner tube, u  is the center-of-mass displacement in the 

outer-tube-center coordinate system (separation distance), and extF  is the total external 

force applied on the inner tube due to the van der Waals interaction. 

Even in this reduced rigid model of the nanotube-based oscillator, we still need to 

discretize the CNT into particles since the van der Waals interaction is approximated as 

interaction between particles. As well, the accuracy of the model depends on the number 

of particles that is used in the computer simulation. In this chapter, this reduced model is 

also called the rigid meshfree particle (MP) model while the original MP model is called 

the deformable MP model. 
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7.2.6 Verification 

We study the oscillation mechanism of a (10, 10)/(5, 5)  nanotube-based oscillator 

which is illustrated in Fig. 7.2 to verify the proposed meshfree particle model via 

comparing with molecular dynamics simulations. We first assume that the system is 

isolated so that there is no heat exchange between the oscillator and its surrounding. The 

outer tube is 3.7nm long, and it is an open-ended (10, 10) armchair tube containing 620 

atoms. The inner tube is 2.5nm  long, and it is a capped (5, 5) armchair tube containing 

260 atoms. In the meshfree particle model, the outer tube surface is discretized with 320 

particles following a 15 20×  regular background mesh. For the inner tube, a 10 10×  

background mesh is utilized to discretize the tube cylinder and a 3 10×  mesh for the caps. 

Consequently, the continuum model of the inner tube has totally 152 particles. The 

distance between two tubes in the radial direction is 0.34nm  so that the system satisfies 

the stability criterion proposed by Legoas et al. [92]. In our simulations, the outer tube is 

fixed and the inner tube is free and deformable in the system. The initial extrusion of the 

inner tube is half of the inner tube length. When the inner tube is released without any 

initial velocity, the interlayer force, due to the van der Waals energy between the tubes, 

will drive the inner tube to move towards the center of the outer tube. The inner tube will 

be accelerated until the interlayer potential reaches the minimum. The center-of-mass 

velocity of the inner tube will start to decrease when the interlayer potential increases. 

Once the center-of-mass velocity of the inner tube becomes zero, the separation reaches 

the maximum. Then the interlayer force tends to drive the inner tube backwards to the 

center of the outer tube. 
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It is assumed that the atoms on the inner tube only move along the cylinder 

surface without out-of-plane motion. We also assume that the bond lengths between 

atoms could be approximated by the arc length on the cylinder surface between the 

positions of the atoms. Therefore the motion and deformation of the inner tube could be 

modeled by the meshfree particle method using the traditional Cauchy-Born rule. It 

should be noted that the caps of the inner tube are modeled as rigid surfaces since the 

surface of the sphere is undevelopable. All the mass and interlayer forces on the caps are 

uniformly distributed to the particles on the tube cylinder, and the motion of the caps is 

approximated by the center-of-mass motion of the tube cylinder. 

 

 

Figure 7.2: MD and MP models of a (10, 10)/(5, 5) nanotube-based oscillator 

 

Fig. 7.3 shows the separation distance evolution of the system obtained from the 

meshfree particle method and compared with the molecular dynamics result. It can be 
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seen that the inner tube travels back and forth stably in the outer tube tunnel. Since there 

is no friction and other energy dissipation, the oscillator maintains constant amplitude, 

and the oscillatory frequency is around 55GHz which agrees to what Xiao et al. [8] 

obtained via molecular dynamics simulations. The relative velocities, which are the 

particle velocities with respect to the local coordinate system at mass center of the inner 

tube, at different times, are shown in Fig. 7.4. We can see that several shock waves 

induce in the inner tube during its oscillation. Those shock waves propagate back and 

forth between the ends of the inner tube and interact with each other. It should be noted 

that the relative velocities are very small comparing with the velocity of the center-of-

mass of the inner tube. As well, the shock wave speeds are very high due to the high 

stiffness of the nanotube. Consequently, the inner tube behaves like a rigid body. Fig. 7.5 

gives the comparison between the deformable and rigid MP models. It is seen that rigid 

model also gives us a good approximation. 
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Figure 7.3: Comparison of separation distance evolutions between MD and the 

deformable MP model 

 

 

 Figure 7.4: Relative velocity contours at different times 
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Figure 7.5: Comparison of separation distance evolutions between the deformable and 

rigid MP models 

 

Next we further consider the interlayer friction and compare it with the MD 

simulation done by Xiao et al. [8]. In this example, the outer tube is a 3.6-nm-long open-

ended (10, 10) armchair tube containing 600 atoms while the inner tube is a 2.2-nm-long 

capped (5, 5) armchair tube containing 180 atoms. In the MP model, there are 380 

particles for the outer tube and 152 particles for the inner tube. The initial configuration 

of the MP model and the corresponding MD model are shown in Fig. 7.6. 

The effective interlayer friction in the MD system at certain time can be 

calculated based on the following equation [95]: 

 pot
eff

max

1
4

dE
F

f dtξ
=  (7.14) 
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where maxξ  is the oscillator amplitude of the nanotube-based oscillator, f  is the  

oscillator frequency, and potdE
dt

 is the potential energy dissipation rate. From the MD 

simulation, the effective interlayer friction is calculated to be 0.025pN  per atom. We 

applied this interlayer friction as an external force in the continuum model. Fig. 7.7 

shows the separation distance as a function of time and compared it with the result from 

MD simulation. We can see they are in good agreement. 

 

  

Figure 7.6: Initial configurations of a (10, 10)/(5, 5) nanotube-based oscillator 
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Figure 7.7: Comparison of separation distance between MD and MP simulations 

 

7.2.7 Frequencies of Nanotube-based Oscillator 

We employ (10, 10) carbon nanotubes with various lengths as the outer tube to 

study its length effects on the oscillation mechanism of (10, 10)/(5, 5) nanotube-based 

oscillators. In the following simulations, we maintain the length of the inner tube to be 

2.2nm  and the initial extrusion to be half of the inner tube length, 1.1nm . Due to the 

interlayer van der Waals force, the inner tube is accelerated at the beginning release. The 

accelerating distance could be estimated as accl extru inner / 2 1.1nmL L L= = = , through which 

the center-of-mass velocity of the inner tube increases from zero to a constant, maxV . For 

simplification, we assume the mean interlayer force applied on the inner tube remain 

constant when the inner tube travels through the accelerating distance so that the elapsed 

time can be approximately by accl accl max2 /t L V= . It is reasonable especially when the inner 
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tube is long enough since the nonlinear force only occurs when the inner tube end is close 

to the outer tube end. The acceleration can be calculated from the mean interlayer force 

and the mass of the inner tube. Here, they are vdw 0.6nNF =  and 24
0 3.4 10 kgm −= × . So, 

the maximum center-of-mass velocity is max accl2 623m/sV aL= ≈ . Therefore, the 

oscillatory frequency can be estimated once the length of the outer tube is given through 

the following formula 

 
( )

max

outer innerouter accl
accl

max

1
222 2

Vf
L LL Lt

V

= =
+⎛ ⎞−

+⎜ ⎟
⎝ ⎠

 (7.15) 

Fig. 7.8 illustrates the effect of the length of the outer tube on the nano-oscillator 

frequency. The oscillatory frequency can be as high as 72GHz  when length of the outer 

tube equals that of the inner tube, which was also predicted by Xiao et al. [8]. It also 

shows the frequencies from MP and MD simulations. They agree with the estimation 

very well. 

Next we investigate the length effects on the oscillation mechanism from the inner 

tube. We employ (5, 5) carbon nanotube with various length as the inner tube of the (10, 

10)/(5, 5) nanotube-based oscillators and maintain the length of the outer tube to be 

25nm . The initial extrusion is still the half of the inner tube length. The mean interlayer 

force applied on the inner tube is still 0.6nN , but the mass of the inner tube and the 

accelerating distance vary with the length of the inner tube. However, since accl innerL L∝  

and inner1/a L∝ , the maximum center-of-mass velocity is still a constant around 623m/s . 

Therefore, the oscillatory frequency also can be predicted by Eq. (7.15). 
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Figure 7.8: Frequencies of the nanotube-based oscillators with different outer tube 

lengths 

 

  

Figure 7.9: Frequencies of the nanotube-based oscillators with different inner tube 

lengths 
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Fig. 7.9 shows the comparison of the frequencies of different inner tube length 

from both Eq. (7.15) and MP simulations. The results agree with each other especially 

when we have a large inner tube length. That’s because the non-constant interlayer force 

is negligible for a long inner tube. It should be noted that Eq. (7.15) worked for various 

cases as long as the initial extrusion was half of the inner tube length and the interlayer 

distance between outer and inner tube was around 0.34nm . However, it is easy to modify 

Eq. (7.15) by the same methodology for different extrusion lengths.  

7.3 NEMS Design for CNT-based Nano Devices 

7.3.1 Motivation 

Due to their extraordinary mechanical, thermal and electrical properties, carbon 

nanotubes (CNTs) have attracted tremendous interest from fundamental science and 

technological perspectives. Nanotube-based electronics is one of the main potential uses 

of carbon nanotubes. The flexibility of nanoscale design and availability of both 

semiconducting and metallic nanotubes enable a wide variety of device configurations 

[78, 96, 100, 101]. These devices include metallic wires, field-effect transistors, 

electromechanical sensors and displays [96]. Another exciting application of the CNT is 

the development of the CNT-based high-density data storage devices [96]. This new type 

of memory can have up to 100-times the storage density of existing random access 

memories (RAMs) by taking the advantage of the unique electromechanical properties of 

CNTs.   

With the interest to develop the nanotube-based memory cell, we have analyzed 

the mechanism of the nanotube-based oscillator in the previous sections. An example of a 
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(5, 5)/(10, 10) nanotube-based oscillator illustrates the evolution of the separation 

distance while the inner tube oscillates inside the outer tube. The calculated frequency is 

55GHz and is referred to as the natural oscillatory frequency of this particular nano-

oscillator. We also showed that the natural oscillatory frequency depends on the structure 

and the length of nanotubes. However, when an oscillator is subject to a finite 

temperature as discussed in [8, 94], mechanical energy dissipation will be observed and 

the oscillation will cease. Such energy dissipation was found to be strongly dependent on 

the morphology combination of the tubes. MD simulations led to the conclusion that a 

carbon nanotube itself could not be used as a steady nano-oscillator at finite temperatures. 

Therefore, to make the steady nanotube-based oscillator capable of functioning at specific 

temperatures, special treatment needs to be considered in the nanoelectromechanical 

systems (NEMS) design to overcome the energy dissipation.   

7.3.2 NEMS Design for CNT-based Memory Cell 

  

 Figure 7.10: A NEMS design for memory cells 

  

Fig. 7.10 illustrates a simple example of the proposed NEMS design. The outer 

tube is a capped (17, 0) zigzag tube while the inner tube is a capped (5, 5) armchair tube. 
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It has been known that carbon nanotubes with different chiralities exhibit different 

electrical properties. It is known that if (m-n)/3 is an integer, the carbon nanotube is 

metallic, otherwise the tube is semiconducting. In the proposed design, the outer tube is 

semiconducting while the inner tube can be either metallic or semiconducting. In the 

example depicted in Fig. 7.10, the (17, 0) nanotube is semiconducting and the (5, 5) 

nanotube is metallic. The outer tube is positioned on the top of a conducting ground 

plane. Atomic materials for the conducting electrodes 1 and 2 are deposited on the top of 

the outer nanotube. In this configuration the inner tube sits in a double-bottom 

electromagnetic potential well. The depth of the potential well under electrode 1 is 

proportional to the voltage applied to electrode 1; similarly, the depth of the potential 

well under electrode 2 is proportional to the voltage applied to electrode 2. The induced 

quasi-static electromagnetic forces exerted on the inner tube will overcome interlayer 

friction if the applied voltage is sufficiently large.  This large applied voltage is referred 

to as the WRITE voltage. When a WRITE voltage is applied to the electrode, the inner 

tube may move due to the induced electromagnetic forces [102, 103]. It is because the 

electromagnetic force due to the applied WRITE voltage is sufficiently strong to 

overcome the interlayer friction acting upon the inner nanotube. Consequently, lateral 

motion of the inner tube will be induced as a result. Here, a capped outer tube is 

employed because the inner tube can easily escape from an open outer tube due to the 

induced electromagnetic forces. The capacitance of the NEMS gate can be read by a 

distinct READ process.  A constant-current pulse is applied to one of the electrodes.  If 

the inner CNT is present under that electrode, a relatively large capacitance will be 

observed, and the time required to charge the electrode will be longer.  If the inner tube is 
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not present under that electrode, a relatively small capacitance will be observed, as will a 

concomitant fast charging time for the electrode.  As a result, the logic state of the NEMS 

gate can be determined, as schematically shown in Fig. 7.11. It should be noted that all 

READ voltages are sufficiently small so that the motion of the inner tube will not be 

influenced. Whether the inner tube is underneath electrode 1 or electrode 2 will result in 

two different physical states determined by the READ voltage. These two different 

physical states can be interpreted as Boolean logic states. Therefore, the system can be 

used as a static random access memory (SRAM) cell. 

 

  

 Figure 7.11: Schematic read voltage 

 

7.3.3 Electromechanical Properties of CNT-based Memory Cell 

Since the outer carbon nanotube is chosen as semiconducting, its electric property 

is very similar to that of the insulator. Including two electrodes and the conducting 
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ground plane, the whole device can be viewed as a two-conductor capacitor with the 

dielectric spaces between them. The capacitance of the system varies with the presence or 

absence of the inner carbon nanotube. In other words, the electric energy stored in the 

system varies with different positions of the inner tube when a constant voltage is applied 

on the electrode. Consequently, the inner tube will be driven by the induced 

electromechanical force due to the gradient of the electric energy. 

Poisson’s equation is the general way to find the electric potential for a given 

charge distribution [104], 

 2

0

ρ
ε

∇ Φ = −  (7.16) 

where Φ  is the potential (in volts), ρ  is the charge density (in coulombs per cubic meter) 

and 12
0 8.854 10 F/mε −= ×  is the permittivity of free space (in farads per meter). In a 

region of space where there is no unpaired charge density, we have 

 0ρ =  (7.17) 

and the equation for the potential becomes Laplace's equation: 

 2 0∇ Φ =  (7.18) 

The solution of the Laplace and Poisson equations can be obtained by the numerical 

methods such as finite differences, finite elements, Fourier transformations, or method of 

moments [105]. And the electric field at a point is equal to the negative gradient of the 

electric potential there. In symbols, 

 = −∇ΦE  (7.19) 

Capacitance is a measure of the amount of electric charge stored (or separated) for 

a given electric potential. In a capacitor, there are two conducting electrodes which are 
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insulated from one another. The charge on the electrodes is Q+  and Q− , and ΔΦ  

represents the potential difference between the electrodes. 

 QC =
ΔΦ

 (7.20) 

We can determine Q  by a surface integral over the positive conductors, and we find ΔΦ  

from the difference of the potential between the electrodes. 

 
0

1 0

d
SC
V V

ε⋅
=

−
∫ E S�  (7.21) 

where 1V  and 0V  are the potentials for two electrodes respectively. In our design, the 

capacitor is made of an electrode of potential V  with the ground plane which has the zero 

potential, so 1V V= , 0 0V = , and the capacitance is further expressed as 

 
0dSC

V

ε⋅
= ∫

E S�  (7.22) 

The energy stored in a capacitor is 

 21
2

W CV=  (7.23) 

If the length of the electrode along the longitude direction of the nanotube is sufficiently 

large compared with the diameter of the outer nanotube, we can assume that the electric 

field is uniformly distributed along the longitude direction and the fringing regions at the 

both ends of the electrode are negligible. Therefore, Eq. (7.18) can be simplified as a 

two-dimensional case. In this chapter, we can consider the following two cases: the 

capacitor with or without the presence of the inner tube, respectively. For each case, the 

electric field and the capacitance can be easily calculated by taking the advantage of the 

two-dimensional model. If the inner tube is partially under the electrode, the system is 
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effectively the combination of two capacitors in parallel. We denote 0C′  and  1C′  as the 

capacitances of unit length capacitor without and with inner tube respectively, and yield 

the total capacitance of the system,  

 ( )
1 0

0 1 0

0 0

with inner tube
with part of inner tube
without inner tube

C l
C C l C l l

C l

′⎧
⎪ ′ ′= + −⎨
⎪ ′⎩

 (7.24) 

where 0l  is the length of the electrode and l  is the length of the inner tube underneath the 

electrode, which varies with the positions of the inner nanotube, ( )l f z= . And the 

electromstatic force applied on the inner tube can be calculated as 

 ( ) 21
2

W CF z V
z z

∂ ∂
= =

∂ ∂
 (7.25) 

However, if the diameter of the outer nanotube is large and the length of the 

electrode is short, the fringing regions cannot be neglected. In this case, three-

dimensional calculation would be appropriate for this case. 

7.3.4 Capacitance Calculation 

7.3.4.1 Two-dimensional Capacitance Calculation 

The capacitance is the intrinsic property of an electric device. It is a function of 

the physical dimensions of the system of conductors and the permittivity of the dielectric. 

Due to the Gauss’s law, the calculation of the capacitance should be independent of the 

potential and the total charge because the ratio of the pontential to the toal charge is 

constant. Therefore, we can arbitrarily choose the potential on the electrode. Here we 

assume the electrode has a constant potential of 10V .  
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 Figure 7.12: Cross-sectional view of the nanotube-based memory cell 

 

Fig. 7.12 schematically shows the cross section of the nanotube-based memory 

cell. In the considered NEMS, the inner (5, 5) tube has a radius of 0.34nm, and the outer 

(17,0) has a radius of 0.68nm. It is known that the thickness of graphene is 0.34nm . 

Therefore, the (5, 5) inner tube is viewed as a solid rod with the radius of 0.34nm , while 

the (17, 0) outer tube is viewed as a hollow cylinder with the inner radius of 0.34nm and 

the outer radius of 0.68nm . The outer tube sits on the ground plane and is attached 

1.1nm  long electrode on the center top. The region between the electrode and the ground 

plane composes two kinds of dielectrics as indicated in Fig. 7.12. The pink region is free 

space if the inner tube is absent or CNT if the inner tube is present in the system. The 

dielectric constant (relative permittivity) of CNT is chosen to be 5.0, which is also used 

in Crujicic’s work [106].   
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By Gauss’s law, the charge induced on a conductor is equal to the flux ending 

there. The charge calculated from Eq. (7.22) should be independent of the integral path as 

long as the electrode is included in the region. To perform the line integral (surface 

integral in 3-D case), we employ a circle (sphere in 3-D case) with the radius 0.32nm at 

the center top of the outer tube, which is also called “Gaussian surface”.  

Fig. 7.13, Fig. 7.14, and Fig. 7.15 show the two-dimensional electric potential, 

electric field, and electric field on the integral path respectively when the inner tube is 

absent. The calculated capacitance is 191.03 10 F−× . Similarly, Fig. 7.16, Fig. 7.17, and 

Fig. 7.18 show the s electric potential, electric field, and electric field respectively when 

the inner tube is present. The calculated capacitance is 191.11 10 F−× , which is larger than 

the one when the inner tube is absent. 

 

  

 Figure 7.13: 2-D electric potential when the inner tube is absent 
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 Figure 7.14: 2-D electric field when the inner tube is absent 

 

  

 Figure 7.15: 2-D electric field on the integral path when the inner tube is absent 
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 Figure 7.16: 2-D electric potential when the inner tube is present 

 

  

 Figure 7.17: 2-D electric field when the inner tube is present 
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 Figure 7.18: 2-D electric field on the integral path when the inner tube is present 

 

7.3.4.2 Three-dimensional Capacitance Calculation 

We also calculate the capacitance of the nanotube-based memory cell for different 

inner tube position by a three-dimensional model. The 7.5-nm-long (17, 0) outer tube has 

a radius of 0.68nm  and sits on the ground plane with the dimensions of 7.5nm 3.0nm× . 

The (5, 5) inner tube is 1.6nm  long and has a radius of 0.34nm . The electrode attached 

on the center top of the outer tube is 0.3nm  long in the longitude direction and 1.1nm  

wide along the lateral direction. The CNTs in the model are solid rod and hollow cylinder 

with a 0.34nm  thickness. The dielectric constant of CNT is also 5.0.  
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 Figure 7.19: 3-D electric field for different inner tube positions 
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Figure 7.20: 3-D electric field on the integral surface for different inner tube positions 

 

  

 Figure 7.21: Comparison of capacitance from 2-D and 3-D calculations 

 

Fig. 7.19 shows the three-dimensional electric fields when the separation distance 

is 2.5nm− , 0.8nm−  and 0.0nm . The integral is conducted on the surface of a sphere 

located in the middle of the electrode. Fig. 7.20 gives the three-dimensional electric field 

on the integral surface for different inner tube positions. And the comparison of the 
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capacitance calculated from two-dimensional and three-dimensional model is presented 

in Fig. 7.21, in which we can conclude that the two-dimensional model is a good 

approximation. 

7.3.5 CNT-based Memory Cell 

 

 

Figure 7.22: Geometry of the nanotube-based memory cell 

 

An example of the proposed nanotube-base memory cell is indicated in Fig. 7.22. 

The length of (17, 0) outer CNT has the length of 6.4nm , while the (5, 5) inner CNT has 

the length of 3.7nm . There are 884 particles in the MP model. We attach two 2.0nm long 

electrodes symmetrically on the top of the outer CNT. Initially, the inner tube is at the 

center of the outer tube. The voltage applied on the electrodes can not too large otherwise 

the CNT could start unraveling carbon chains from the exposed edge. Lee et al. claimed 

that the breakdown voltage of the CNT is round 2.0V/Å [107]. Therefore, the CNTs in 

our design could afford a potential of several hundreds volts to maintain its 

electrochemical stability. Here we apply 16V  constant voltage on the two electrodes 

alternatively for the time interval of 1ns . The total electromagnetic force applied on the 
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inner tube is around 1.0nN  which is calculated via Eq. (7.10) and the capacitance came 

from the two-dimensional model. 

 

  

Figure 7.23: Separation distance of the short nanotube-based memory cell in SRAM 

configuration 

 

Fig. 7.23 shows the separation distance of the nanotube-based memory cell when 

constant voltage is applied on the electrodes alternatively. After we apply the voltage on 

electrode 2, the inner tube is stimulated to move due to the induced electromagnetic force. 

Under electrode 2, the amplitude of the oscillation is getting smaller and smaller due to 

the interlayer friction and the electromagnetic force. Finally, the inner tube ceases under 

electrode 2 after about 500ps. When the voltage is shifted to electrode 1, the inner tube 

moves again and ceases under electrode 1. Such a motion of the inner tube repeats as 

long as the shifting voltage is applied on the electrodes. When the inner tube is under 
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electrode 1 or electrode 2, its position can be detected by the READ process and the logic 

states 0 and 1 are produced. Fig. 7.24 shows the position of the inner tube at different 

logic state. The red color on the electrode indicates the applied voltage. The frequency of 

the memory cell depends on the frequency of the voltage shifting, which means the 

device works as a SRAM.  In this case, the frequency of this SRAM is 500MHz. Since it 

takes 500ps for the inner tube to cease under an electrode, the recommended maximum 

frequency is 1GHz. 

 

  

  

  

Figure 7.24: Positions of the inner tube at different logic states in SRAM configuration 
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Next, we consider the same SRAM device with longer CNTs. We maintain the 

diameter of the CNTs but change the lengths of the outer and inner tube to 32nm  and  

18nm  respectively. The electrodes are elongated to 10nm  so that the inner tube can be 

stimulated at any position. The voltages applied on the electrodes are still 16V  but the 

electromagnetic forces are increased due to the change of electrode lengths. There are 

2834 particles in the MP model. Fig. 7.25 shows the separation distance of the nanotube-

based memory cell when constant voltage is applied on the electrodes alternatively. It can 

be seen that we can also obtain different logic states with the frequency around 500MHz.  

Obviously the maximum frequency of a nanotube-based memory cell depends on lengths 

of the inner tube, the out tube, and the electrodes.  

 

  

Figure 7.25: Separation distance of the long nanotube-based memory cell in SRAM 

configuration 
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It is obvious that the frequency of the proposed NEMS cannot exceed the natural 

frequency of its embedded nanotube-based oscillator. Since the nanotube-based oscillator 

is an underdamped system, the proposed design can be extended for application as a 

dynamic random access memory (DRAM) cell. In this configuration, the oscillator will 

continue to oscillate at its natural frequency. A WRITE voltage pulse is applied every 

several oscillation periods to stimulate oscillation of the oscillator. The period of the 

WRITE voltage pulse should not be larger than natural period of the oscillator so that the 

induced voltage acts to enhance oscillation from time to time. Consequently, a steady 

oscillation can be generated. 

Fig. 7.26 shows the separation distance of the nanotube-based memory cell in the 

DRAM configuration. In this case the DRAM still composes of a 32-nm-long (17, 0) 

outer tube and a 18-nm-long (5, 5) inner tube. Here, we use an open-ended outer tube 

instead of the capped one. Two 10-nm-long electrodes are attached on the top of the outer 

tube. Initially, the inner tube is at the position where the separation distance is 4nm− and 

with the velocity of 400m/s . With such an initial condition, the natural oscillating 

frequency of the oscillator is 6.75GHz.  We apply a voltage of 48V  at the electrode 2 

and last it for 2ps . The inner tube is accelerated but the oscillatory amplitude decreases 

due to the interlayer friction. After the oscillator oscillates four cycles, we give the same 

voltage pulse on the electrode 2 to increase the oscillatory amplitude. Then, the inner tube 

keeps oscillating. Figure 7.26 shows that stable oscillation can be reached for DRAM 

cells.  

Fig. 7.27 gives the periodic voltages applied on the electrode 2, and Fig. 7.28 

shows the positions of the inner tube at different logic states in DRAM configuration. It 
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should be noted that we applied the periodic voltage pulses on the electrode 2 in this case. 

However, voltage pulses on the electrode 1 or on both electrodes 1 and 2 alternatively can 

also maintain the oscillation of oscillators. 

 

  

Figure 7.26: Separation distance of the long nanotube-based memory cell in DRAM 

configuration 
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Figure 7.27: Voltage on electrode 2 of the long nanotube-based memory cell in DRAM 

configuration 

 

 

 

Figure 7.28: Positions of the inner tube at different logic states in DRAM configuration 
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7.4 Summary and Conclusions 

The mechanism of the nanotube-based oscillator has been studied by the 

nanoscale meshfree particle method. Since the rigid body motion dominates the 

oscillation of oscillators, the nanoscale meshfree particle model is simplified to calculate 

interlayer interaction between the outer tube and inner tube. A NEMS design, containing 

nanotube-based oscillators has been proposed as a memory cell. The electric properties of 

the nanotube-based memory cell have been analyzed. Numerical analyses demonstrated 

that the superposed electric field overcomes the interlayer friction in the embedded 

nanotube-based oscillator so that the steady oscillatory mechanism can be obtained and 

the representation of the Boolean logic states is possible. 
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CHAPTER 8  

SUMMARY AND FUTURE WORK 

8.1 Summary 

It has been known that temperature has significant effects on material behaviors at 

the nanoscale. Although multiscale methods can overcome the limitations of length/time 

scale that molecular dynamics has, they have difficulties in investigating temperature-

dependent physical phenomena because most homogenization techniques have an 

assumption of zero temperature. A new homogenization technique, the temperature-

related Cauchy-Born (TCB) rule, was developed in this thesis with the consideration of 

the free energy instead of the potential energy. The TCB rule assumes that atoms have 

locally harmonic motion in addition to homogeneous assumption. When employing the 

TCB rule in the nanoscale continuum approximation, the first Piola-Kirchhoff stress can 

be explicitly computed as the first derivative of the Helmholtz free energy density to the 

deformation gradient. Since the Helmholtz free energy is temperature-dependent, 

multiscale methods consisting of the TCB rule embedded continuum model can be used 

to elucidate temperature-related physical phenomena at the nanoscale. Stress analyses of 

canonical ensembles verify the continuum approximation with the TCB rule by 

comparing the calculated Cauchy stresses with the outcomes of molecular dynamics 

simulations. Temperature-related material instability was also studied in this thesis. The 

von Neumann stability analysis showed that the temperature-dependent intrinsic stability 

of a crystalline solid could be reflected by TCB rule. Stability analyses of a 1D molecule 

chain and 2D lattices verified that the stability states from TCB rule are the same as the 

ones from molecular dynamics simulation at given temperature. We also found that 
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stiffer materials can sustain larger deformations than softer materials at the same 

temperature. 

A nanoscale meshfree particle method with the implementation of a temperature-

dependent homogenization technique was also developed in this thesis. The intrinsic 

properties of the material associated with each particle could be sought from the atomic 

level via the TCB rule. Therefore, numerical simulations in nanotechnology can be 

beneficial from the advantages of the meshfree particle methods. This progress makes it 

possible to treat extremely large deformation problems and the problems involving 

discontinuities, such as fractures, at nanoscale. In addition, we developed a thermo-

mechanical coupling model through implementing the thermal diffusion equation into 

nanoscale continuum approximation. Crack propagation at a nanoplate was studied as an 

example. Since the nanoscale phenomenon of bond breaking is involved when crack 

propagates, temperature increasing around the crack tip due to the released potential is 

considered in our thermo-mechanical coupling model. 

With the interest to study the electromechanical behavior of nanoscale devices, a 

design of nanotube-based memory cells is proposed and analyzed via nanoscale meshfree 

particle method. In this design, the superposed electric field overcomes the interlayer 

friction in the embedded nanotube-based oscillator so that the steady oscillatory 

mechanism can be obtained.  Under different voltage schemes applied on the attached 

electrodes, our numerical simulations indicated that the motions of the inner nanotube 

represent different Boolean logic states. 
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8.2 Future Work 

In the design of the nanotube-based memory cell, the setup scheme indicates that 

both the inner tube and the outer tube consist of single-walled carbon nanotubes (SWNT). 

However, during fabrication, carbon nanotubes assemble as either multi-walled 

nanotubes (MWNTs) or bundles consisting of individual SWNTs that are rather difficult 

to separate. Given there is no doubt that the proposed memory cell design can be easily 

extended for practical use, an extended design is assumed, in which an MWNT will be 

employed as the shell. At the very least, the most outer tube must be capped. The core 

can consist of either an MWNT or an SWNT bundle. When an open MWNT is used as 

the core, it is suspected that interlayer slippage may be observed when the core oscillates 

within the shell. Similar slippage may occur between SWNTs if a SWNT bundle is used 

as the core. These potential instances of slippage will result in an unstable oscillation 

mechanism and in turn preclude the use of the proposed NEMS design as a memory cell. 

The potential for occurrence of the above possible phenomena will be investigated using 

numerical simulation. In our future research, experiment will also be employed to 

ascertain and verify slippage phenomena as predicted from numerical methods. If 

slippage is confirmed, only capped MWNT or the SWNT (capped or open) will be used 

as the oscillator. 

Bounds on the WRITE voltage are critical and must be determined in the practical 

design. If the applied voltage is too small, an electrostatic force sufficient to overcome 

the static friction between the inner and outer tubes will not be obtained.  In contrast, a 

WRITE voltage that is too large may cause the inner tube to impact and possibly damage 

the outer tube due to the large forces and high energy placed on the inner tube.  Lee et al 
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claimed that the breakdown voltage of the CNT is round 2.0V/Å [107]. If the electric 

field is larger than this value, the CNT could start unraveling carbon chains from the 

exposed edge. A voltage range sufficient to permit a reliable WRITE will be determined. 

It has been shown that certain conditions [95] may result in interlayer friction of 

various values between the outer tube and the inner tube, including: 1) chiralities of the 

outer tube and the inner tube; 2) topology and vacancy defects in carbon nanotubes; 3) 

temperature. Some conditions can have a significant effect on interlayer friction and, in 

turn, influence the predicted interval of the WRITE voltage. Several NEMS designs of 

various outer tube and inner tube configurations will be investigated in the future. The 

effects of the temperature in the mechanisms of the proposed memory cell design will 

also be investigated. 
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APPENDIX A 

MOLECULAR MECHANICS/DYNAMICS 

Molecular mechanics/dynamics are one of the standard numerical methods used 

to study nanoscale systems. Molecular mechanics uses mathematical techniques to yield 

an equilibrium position of the system. Classical molecular dynamics methods solve 

Newton’s equations of motion numerically for a set of atoms or molecules, which interact 

via a given potential energy. 

A.1 Molecular Dynamics 

Molecular dynamics (MD) is a computer simulation technique in which the time 

evolution of a set of interacting atoms is followed by integrating their equations of 

motion. We consider a set of atoms labeled by integers [ ], 1,I I n∈  with coordinates 

( )I tx . The mass of the nucleus is denoted by Im . The displacement is defined by 

 ( ) ( ) ( )0I I It t= −u x x  (A.1) 

The governing equations are Newton’s second law: 

 I I Im =u f&&  (A.2) 

where 

 ext int
I I I= −f f f  (A.3) 

where If  is the net force acting upon the atom I . int
If  are forces arising from the same 

body; ext
If  are any external forces, such as Van der Waals forces. 

The internal forces are obtained from the first derivative of potential energy W  

with respect to the displacement: 
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 int
I

I I

W W∂ ∂
= =
∂ ∂

f
u x

 (A.4) 

The second-order Verlet scheme is used for time integration algorithm (it is 

identical to the central difference method): 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
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t t t t t t t

t t t t t

t t t t
m

t t t t t t t

+ Δ = + Δ + Δ

+ Δ = + Δ

+ Δ = + Δ

+ Δ = + Δ + + Δ Δ

u u v a

v v a

a f

v v a

 (A.5) 

A.2 Molecular Mechanics 

Molecular mechanics neglects the motion of atoms, so strictly speaking, it only 

applies to 0K. However, considerable insight to molecular behavior can be gained by 

molecular mechanics. The governing equations, Eq. (A.2), are then become 

 0I =f  (A.6) 

where If  is the force applied on the atom I . 

The nonlinear conjugate gradient method [108] is used with the secant method 

here to solve these equations. It finds the configuration 
0
x  that minimizes the total 

potential energy of the system, which means at this configuration Eq. (A.6) holds. 
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 APPENDIX B 

BERENDSEN THERMOSTAT 

Temperature is a thermodynamic quantity. For a system containing N  particles, 

the temperature can be related to the average kinetic energy K  of the system through 

the principle of equipartition of energy, which states that every degree of freedom has an 

average energy of 2BTκ  associated with it [109, 110]. That is 

 2 f1
2 2

N
B

i i
i

N TK m v κ
= =∑  (B.1) 

where fN  is the number of degrees of freedom per atom, Bκ  is the Boltzmann constant, 

and T  is the thermodynamic temperature.  

The Berendsen thermostat [54] can be thought of as a system that is coupled to a 

thermal bath held at the desired temperature. The coupling is simulated by random 

“collisions” of system particles with thermal bath particles. After each collision, the 

velocity of a randomly chosen system particle is modified by a factor λ  corresponding to 

the desired temperature. This λ  is given by 

 
1 2

01 1
T

Tt
T

λ
τ

⎡ ⎤Δ ⎛ ⎞= + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (B.2) 

where tΔ  is the time step and Tτ  is the time constant of the coupling. In this way, the 

velocities of the particles are adjusted such that the instant temperature T  approaches the 

desired temperature 0T . 
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APPENDIX C 

NONLINEAR CONJUGATE GRADIENT METHOD 

The nonlinear conjugate gradient (CG) [108, 111] method finds the stationary 

point of the system, i.e. the configuration for which the first derivatives of potential 

function with respect to any coordinate vanish 

 ( )
0

0
W∂

=
∂

x

x
x

 (C.1) 

This configuration 
0
x  is the solution to 0I =f  in molecular mechanics. 

Given a potential function W , a starting value x , a maximum number of CG 

iterations maxi , a CG error tolerance 1ε < , the minimum point will be found by iteration. 

In each iteration, a general line search is used to find the proper α  that minimizes 

( )W α+x d , where ( )W ′= −d x  is the searching direction, so that 

 ( ) 0
W α

α
∂ +

=
∂
x d

 (C.2) 

Two iterative methods for this zero-finding are the Newton method and the Secant 

method. Both methods require that W  be twice continuously differentiable. The Newton 

method also requires that it is possible to calculate the second derivative of ( )W α+x d  

with respect to α . 

The Newton method relies on the Taylor series approximation 

 ( ) ( ) ( )T Td
d

W W Wα α
α

′ ′′+ ≈ +⎡ ⎤⎣ ⎦x d x d d x d  (C.3) 

The function ( )W α+x d  is approximately minimized by setting Eq. (C.3) to zero, giving 
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T

T

W
W

α
′

= −
′′
d

d d
 (C.4) 

The repeated steps of Eq. (C.4) must be taken until TW ′ d  is zero so that the 

values of TW ′ d  and TW ′′d d  must be evaluated at each step. These evaluations may be 

expensive. Therefore, the Secant method is used here because it avoids calculating the 

second derivatives of function W . To perform an exact line search without computing 

W ′′ , the Secant method approximates the second derivatives of ( )W α+x d  by evaluating 

the first derivative at the distinct points 0α =  and α σ= , where σ  is an arbitrary small 

nonzero number: 

 ( ) ( ) ( )T T
2

2

d
d

W W
W

σ
α

α σ

′ ′+ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦+ =
x d d x d

x d  (C.5) 

The above becomes a better approximation to the second derivative as α  and σ  

approaches zero. Substituting Eq. (C.5) into the Taylor expansion of the first derivative of 

( )W α+x d , the following equation is given: 

 ( ) ( ) ( ) ( ){ }T T Td
d

W W W Wαα σ
α σ

′ ′ ′+ ≈ + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦x d x x d d x d  (C.6) 

Minimize ( )W α+x d  by setting its derivatives to zero: 

 
( )

( ) ( )

T

T T

W

W W
α σ

σ

′⎡ ⎤⎣ ⎦= −
′ ′+ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

x d

x d d x d
 (C.7) 

An arbitrary σ  is chosen on the first Secant method iteration; on subsequent 

iterations σ+x d  is chosen to be the value of x  from the previous Secant method 

iteration and the negative calculated value of α  is to be the value of σ  for the next 

interation. 



www.manaraa.com

 

 

166

APPENDIX D 

ATOMIC LEVEL CAUCHY STRESS 

The atomic-level Cauchy stresses [112, 113], Aσ , of the simulated molecular 

system with the volume of 0V  can be calculated via 

 
( )0

1 1
2

A
ij ij

i j iV ≠

⎛ ⎞
= ⊗⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑σ r f  (D.1) 

where ( )ij j i= −r r r  represents interatomic distance between atoms j  and i , and ⊗  

denotes the tensor product of two vectors. The sign convention adopted here for 

interatomic forces, ijf ,  is positive for attraction and negative for repulsion. Accordingly, 

a positive stress indicates tension and a negative stress indicates compression. The 

interatomic force from bond-stretching potential is 

 
( )

( )s ij ij ij
ij s ij

ij ij ij

r
r

r r r
ϕ

ϕ
∂

′= =
∂

r r
f  (D.2) 

For angle-bending potential, the angle jikθ  between two vectors ijr  and ikr  can be 

calculated as 

 arccos ij ik
jik

ij ikr r
θ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

r r�
 (D.3) 

So, the interatomic force from the angle-bending potential [114] is 

 22

1 ( )
1 cos

ij ik ijik
ij a jik

ij ik ij ik ijjik
r r r r r

ϕ θ
θ

⎛ ⎞
′= − −⎜ ⎟⎜ ⎟− ⎝ ⎠

r r rrf
�

 (D.4) 

We should note here that the Monte Carlo method could result in the same state of 

stresses as molecular dynamic simulations for canonical ensembles.  
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The continuum-level Cauchy stress, Cσ , is computed [33] as 

 1C J −= ⋅σ F P  (D.5) 

where P  is the nominal stress, ( )detJ = F  is the determinant of deformation gradient F . 
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APPENDIX E 

MESHFREE METHOD FOR THE DIFFUSION EUQATION 

In a two-dimensional problem subject to the Lagrangian description, the thermal 

diffusion equation is  

 
2 2

0 2 2
1 2

v
T Tc T k

X X
ρ

⎛ ⎞∂ ∂
= +⎜ ⎟∂ ∂⎝ ⎠

&  (E.1) 

In order to use the Galerkin’s method, we need to develop an appropriate weak form first. 

Assuming 0Ω  refers to volume of an arbitrary element in the reference configuration, 

moving all terms in the differential equation to the left-hand side, multiplying by the test 

function Tδ  and integrating over the volume, the Galerkin weighted residual for the 

problem is 

 
0

2 2

0 02 2
1 2

0
v

k T TT Td
c X X

ρ δ
Ω

⎡ ⎤⎛ ⎞∂ ∂
− + Ω =⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

∫ &  (E.2) 

Using integration by parts, 
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− Ω = − + Ω

∂ ∂ ∂ ∂

∂∂ ∂ ∂
− Ω = − + Ω

∂ ∂ ∂ ∂

∫ ∫

∫ ∫
 (E.3) 

where the boundary terms in the right hand sides vanish due to the essential boundary 

condition requirement. Rearrange all the terms and the weak form is written as 

 ( ) ( )
0 0

0 0 0
1 1 2 2v

T Tk T TT Td d
c X X X X

δ δ
δ ρ

Ω Ω

∂ ∂⎛ ⎞∂ ∂
Ω = − + Ω⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫ ∫&  (E.4) 

In meshfree particle methods [40], the fields of temperature can be approximated 

as 
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 ( ) ( ) ( ),h
I I

I
T t T tω=∑X X  (E.5) 

Substituting Eq. (E.5) into weak form Eq. (E.4), the left hand side is 
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X
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& &

&
 (E.6) 

where IV  is the volume of particle I . In order to simplify the equation, we diagonalize 

the mass matrix and take the advantage of the property of kernel function, ( ) 1j I
j

ω =∑ X , 
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∑
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&

&

 (E.7) 

where 0I Im Vρ=  is the mass of particle I . The right hand side is 
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Since the integral domain is arbitrary, finally we got 

 I I IJ Jm T K T=&  (E.9) 

where 

 ( ) ( ) ( ) ( )
0

0
1 1 2 2

I J I J
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kK d
c X X X X
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∂ ∂ ∂ ∂⎡ ⎤
= − + Ω⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∫
X X X X

 (E.10) 
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APPENDIX F 

CALCULATION OF THE THERMAL PARAMETERS 

F.1 Thermal Conductivity 

Thermal conductivity k  is the intensive property of a material that indicates its 

ability to conduct heat. It is defined as the quantity of heat, Q , transmitted in time t  

through a thickness L , in a direction normal to a surface of area A , due to a temperature 

difference TΔ , under steady state conditions and when the heat transfer is dependent 

only on the temperature gradient.  

For the hexagonal-triangular lattice in which the bond length is 1.0nm and the 

atom mass is 221.0 10 kg−× , the thermal conductivity is calculated when the atomic 

interaction is described by the harmonic potential 594 N mk = . 

Fig. F.1 shows the specimen we used in this numerical experiment. The nanoplate 

with the hexagonal-triangular lattice has the dimension as 80nm 26nm× . At the initial 

state, the left boundary and right boundary have the temperature of 100K and 1000K 

respectively and remain those numbers in the whole process. The heat will transfer from 

left to right due to the given temperature gradient. The total energy in the center part of 

the plate is measured as a function of time, so that we can calculate the thermal 

conductivity using below formula 

 ( )
( )

18 9

12 9 9

8.22 5.48 10 J 65 10 m
10 10 s 26 10 m 10 m 900K

0.76 w m K

Q Lk
t A T

− −

− − −

= ×
×Δ
− × ×

= ×
× × × ×

= ⋅

 (F.1) 
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 Figure F.1: Temperature profile of the hexagonal-triangular lattice 

 

  

 Figure F.2: Total energy evolution of the hexagonal-triangular lattice 
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F.2 Specific Heat Capacity 

Specific heat capacity c  is the measure of the heat energy required to raise the 

temperature of a specific quantity of a substance by certain amount. There are two 

distinctly different experimental conditions under which specific heat capacity is 

measured and these are denoted with a subscripted suffix modifying the symbols c. The 

specific heat of substances could be measured under constant pressure (Symbols: pc ) or 

constant volume (Symbols: vc ). Here we conduct the numerical experiment to calculate 

vc . 

The same nanoplate as last experiment is used here. Fig. F.3 and Fig. F.4 gave the 

temperature and total energy of two different thermal state with the temperature 

300.0KT =  and 500.0KT =  respectively. In this case we maintain the volume of the 

material and the specific heat capacity is calculated as   

 
( ) 18

22

1

12.75 9.61 10 J1
1116 1.0 10 kg 200K

0.141J kg K

v
v

Qc
m dT

δ

−

−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞− ×
= ⎜ ⎟⎜ ⎟× × ⎝ ⎠
= ⋅

 (F.2) 

 

Combine those parameters above,  

 0.76 5.40kg m s
0.141v

k
c

⇒ = = ⋅  (F.3) 
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 Figure F.3: Total energy of the hexagonal-triangular lattice at T = 300K 

 

      

 Figure F.4: Total energy of the hexagonal-triangular lattice at T = 500K 
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